The Ecology of Juvenile Salmon in the Northeast Pacific Ocean: Regional Comparisons
Latest Publications


TOTAL DOCUMENTS

10
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By American Fisheries Society

9781888569957

Abstract.—Upon entering marine waters, juvenile Pacific salmon <em>Oncorhynchus </em>spp. depend on feeding at high and sustained levels to achieve growth necessary for survival. In the last decade, several concurrent studies have been examining the food habits and feeding intensity of juvenile Pacific salmon in the shelf regions from California to the northern Gulf of Alaska. In this paper, we compared results from feeding studies for all five species of juvenile salmon (Chinook salmon <em>O. tshawytscha</em>, coho salmon <em>O. kisutch</em>, chum salmon <em>O. keta, </em>sockeye salmon <em>O. nerka</em>, and pink salmon <em>O. gorbuscha</em>) between 2000 and 2002, years when these regions were sampled extensively. Within these years, we temporally stratified our samples to include early (May–July) and late (August–October) periods of ocean migration. Coho and Chinook salmon diets were most similar due to a high consumption of fish prey, whereas pink, chum, and sockeye salmon diets were more variable with no consistently dominant prey taxa. Salmon diets varied more spatially (by oceanographic and regional factors) than temporally (by season or year) in terms of percentage weight or volume of major prey categories. We also examined regional variations in feeding intensity based on stomach fullness (expressed as percent body weight) and percent of empty or overly full stomachs. Stomach fullness tended to be greater off Alaska than off the west coast of the United States, but the data were highly variable. Results from these comparisons provide a large-scale picture of juvenile salmon feeding in coastal waters throughout much of their range, allowing for comparison with available prey resources, growth, and survival patterns associated with the different regions.


Abstract.—We report patterns of infestation with motile salmon lice, <em>Lepeophtheirus salmonis</em>, on Pacific salmon collected with a surface trawl in coastal waters of Oregon, Washington, British Columbia, and Alaska during 2002 and 2003. Salmon lice were observed on all salmon species examined and in all areas surveyed. The prevalence and abundance of lice infestation varied significantly among species, size-classes, seasons, regions, and years, with larger salmon being consistently more heavily infested than small salmon. The number of lice infesting the small size-class (100–400 mm) of salmon rarely exceeded 5 lice per fish with a mean abundance generally below 0.2 lice per fish. Lice prevalence and, to a lesser extent, lice abundance increased over time in small fish, with lower values during spring and higher values in the following winter, and continued to increase in larger and older fish. There were no apparent effects of water temperature on lice infestation in Pacific salmon. This study suggested that salmon infested with lice remained in coastal waters throughout the year. We suggest that lice on salmon that overwinter in coastal waters will contribute to a pool of infective copepodids in these habitats.


Abstract.—We compared epipelagic fish assemblages associated with juvenile (ocean-age 0) Pacific salmon <em>Oncorhynchus </em>spp. from neritic waters of the California Current and Alaska Current regions in the spring–summer and summer–fall periods of 2000–2004. Catches originated from rope trawl surveys conducted between latitudes 37°N and 60°N and spanned more than 1,100 km in the coastal and inshore habitats of each region. Catch data were used from the epipelagic sampling of waters from near surface to depths of about 18 m, primarily over the continental shelf. Catch composition, frequency of occurrence, and density were evaluated between regions and habitats for day sampling. Diel (night and day) catch comparisons were also made at a few localities in each region. In day catches from both regions, a total of 1.69 million fish and squid representing 52 fish families and 118 fish species were sampled from 2,390 trawl hauls. Ninety-seven percent of the daytime catch was composed of 11 fish families and squid in coastal and inshore habitats of each region: clupeids dominated catches in the California Current (72% and 76% of catch, respectively), and salmonids dominated catches in the Alaska Current (46% and 62% of catch, respectively). Juveniles comprised 81–99% of salmon sampled in both coastal and inshore habitats of each region. Frequencies of occurrence were highest for juvenile salmon in both regions, but average densities were highest for Pacific herring <em>Clupea pallasii </em>and Pacific sardine <em>Sardinops sagax </em>in the California Current region. Cluster analyses revealed distinct geographic breakpoints in coastal species assemblages off central Vancouver Island and in inshore species assemblages in southeastern Alaska. Species were found to cluster into six groups from coastal localities and four groups from inshore localities. Indicator species analysis and nonmetric multidimensional scaling revealed that most species of juvenile salmonids were located in northern localities. Although juvenile salmon had the most uniform distribution of any species group, their densities relative to associated species were dramatically lower in the California Current, suggesting a higher degree of interactions between juvenile salmon and other species in this region. Diel comparisons in both regions indicated substantially higher catches at night, particularly of clupeids, osmerids, and gadids. Salmonids were a relatively minor component of the night catch in both regions due to dramatic diel shifts in community structure. Additional study of diel interactions of juvenile salmon and associated species is needed to quantify habitat utilization dynamics in marine ecosystems.


Abstract.—Research on the ecology of salmon in the northeast Pacific Ocean began in the early 20th century. Charles Gilbert and Willis Rich demonstrated the basis for the stock concept and were instrumental in changing common misconceptions of the times. Later in the 1900s, research endeavors, primarily under the auspices of the International North Pacific Fisheries Commission, led to important studies on the distribution and migration of maturing salmon on the high seas. Research on the early juvenile period was initiated later, especially after the 1982–1983 El Niño clearly showed the limits of the ocean’s carrying capacity along the west coast of the United States. There is now good evidence for both intra- and interspecific competition among salmon in the open ocean and for correlations between variable physical environments, such as El Niños and regime shifts, and survival of salmon during early ocean life. How mortality rates are affected by physical forcing, food availability, predation, and food web structure and how these effects will be modified by climate change and global warming are all major challenges for the future.


Abstract.—Interannual variability in chum salmon <em>Oncorhynchus keta </em>mortality during early marine life is thought to have a major influence on recruitment. However, few estimates of daily mortality are available for chum salmon during this period, and average values reported in the literature are unrealistically high when used in a simple life-history model. We analyzed survival to adult of seven groups of chum salmon, marked as juveniles, and released at different times and sizes at Little Port Walter, Alaska to estimate average daily mortality during early marine residency for an early emigration group and a late emigration group. We assumed that differences in proportions of groups surviving to adult between the initial releases of unfed fry and subsequent releases of fed fry for each group were due to natural mortality during the time interval between releases. For both groups, mortality was highest during the period immediately after release, declining rapidly thereafter. Average daily mortality was 8.1% for the early release during their first 21d in the ocean and 3.9% for the late release during the first 32 d in the ocean. After May 4 (54 d and 33 d postrelease, respectively, for the early and late groups), average daily mortality was less than 0.6% for both groups. These results support the paradigm that most of the mortality of chum salmon in the ocean occurs early in their marine residency, and the results provide realistic rates for demographic modeling of the abundance of chum salmon in marine habitats.


Abstract.—Size-selective mortality combined with longer winters at high-latitudes is expected to exert strong directional selection on size, growth, and energy use and storage capacity in northern fish populations. Here, we tested the hypotheses that juvenile Pacific salmon <em>Oncorhynchus </em>spp. grow faster, reach larger size, and accumulate higher energy reserves in the marine environment at northern latitudes using juvenile Chinook salmon <em>O. tshawystcha </em>and coho salmon <em>O. kisutch </em>collected on the continental shelf from the California coast to the Bering Sea. Size reached at the end of the growing season, the quantity of energy stored prior to the onset of winter, and summer growth of juvenile Chinook and coho salmon during their first year at sea varied significantly among regions of the continental shelf. Latitudinal trends were detected for the fall size of subyearling and yearling Chinook salmon and storage energy in yearling Chinook salmon. However, they were opposite to expectations, with values decreasing from southern to northern areas. Latitudinal trends were also apparent for summer growth in juvenile yearling Chinook salmon. However, in contrast to fall size and storage energy, higher growth rates were generally observed in northern rather than in southern regions. Similarly, summer growth generally decreased from northern to southern regions in juvenile coho salmon. Storage energy did not exhibit a consistent trend with latitude in juvenile subyearling Chinook salmon and coho salmon. The different response of juvenile Chinook salmon and coho salmon to a latitudinal cline in temperature and the length of the growing season suggest that both species utilize the marine environment differently. We suggest that regional variations in juvenile salmon growth and energy accumulation may result from differences in prey quality (i.e., lipids), diet, and interspecific competition for prey resources.


Abstract.—A conceptual model of juvenile coho salmon <em>Oncorhynchus kisutch </em>migration from Oregon, Washington, the Columbia–Snake River system, British Columbia, and southeast Alaska was derived using coded-wire-tag data from juvenile salmon surveys conducted between 1995 and 2004. Over this 10-year period, 914 coded-wire-tagged (CWT) juvenile coho salmon were recovered. In general, the migratory behavior of juvenile coho salmon observed in this study was consistent with previous studies showing that juvenile salmon generally undertake a northward migration and utilize the continental shelf as a migration highway. However, this study also revealed that both regional and specific river stocks of coho salmon from all parts of the North American coast are composed of fast components that take a rapid and direct migration in the summer to as far west as Kodiak Island, Alaska and slow components that migrate over a relatively short distance from their natal rivers and reside over winter on the shelf. The Columbia–Snake River system, coastal Oregon, and coastal Washington had the highest proportion of fast CWT migrants among regions. Furthermore, specific stocks within the lower Columbia River had the highest proportion of fast CWT migrants both within the Columbia–Snake River watershed and along the entire west coast of North America. Distances migrated along the shelf were positively correlated to size at capture during the summer for almost all regional stocks, indicating that fast-migrating juvenile coho salmon have faster growth rates. The widespread dispersion along the continental shelf as a consequence of a mix of slow and fast migrants and the subsequent offshore migration into different regions of the Gulf of Alaska may have been selected over evolutionary time scales. This strategy would have ensured the long-term survival of individual stocks by spreading the risk of mortality among oceanic regions.


Abstract.—In this chapter, we describe the distributions and abundances of juvenile Chinook salmon <em>Oncorhynchus tshawytscha</em>, coho salmon <em>O. kisutch</em>, chum salmon <em>O. keta</em>, pink salmon <em>O. gorbuscha</em>, and sockeye salmon <em>O. nerka </em>in six regions along the west coast of North America from central California to the northern Gulf of Alaska during the early summer (June and July) and late summer–fall (August– November) of 2000, 2002, and 2004. We also describe fish abundance in relation to bottom depth and to the average temperature and salinity of the upper water column. Salmon were collected in rope trawls from the upper 15–20 m over the open coastal shelf. Catch per unit effort was standardized across the different regions. Subyearling Chinook salmon were found only from central California to British Columbia. Yearling Chinook salmon were widespread, but were most abundant between Oregon and Vancouver Island. Juvenile coho salmon were widespread from northern California to the northern Gulf of Alaska, whereas chum, sockeye, and pink salmon were only abundant from Vancouver Island north into the Gulf of Alaska. Generally, the juveniles of the different salmon species were most abundant at, or north of, the latitudes at which the adults spawn. Abundances were particularly high near major exit corridors for fish migrating from freshwater or protected marine waters onto the open shelf. Seasonal latitudinal shifts in abundance of the juvenile salmon were generally consistent with the counterclockwise migration model of Hartt and Dell (1986). Subyearling Chinook salmon were associated with the high salinity environment found off California and Oregon, whereas chum, sockeye, and pink salmon were associated with the lower salinity environment in the Gulf of Alaska. However, within regions, evidence for strong temperature or salinity preferences among the different species was lacking. Subyearling Chinook salmon were most abundant in shallow, nearshore water.


Sign in / Sign up

Export Citation Format

Share Document