Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms

1999 ◽  
Vol 56 (1) ◽  
pp. 131-152 ◽  
Author(s):  
Sushil S Dixit ◽  
John P Smol ◽  
Donald F Charles ◽  
Robert M Hughes ◽  
Steven G Paulsen ◽  
...  

Diatom assemblages were selected as indicators of lake condition and to assess historical lake water quality changes in 257 lakes in the northeastern United States. The "top" (surface sediments, present-day) and "bottom" (generally from >30 cm deep, representing historical conditions) samples from sediment cores collected from lakes and reservoirs were analyzed for diatom assemblages. The distribution of diatom species was closely related to several environmental variables, primarily lake water pH, total phosphorus, and chloride. Using weighted-averaging calibration and regression approaches, we constructed predictive models to infer these variables from the diatom assemblages. The diatom-based inference models were then used to assess the current status of lake water quality and to assess historical changes in lake water conditions in natural lakes over the past 150 years. Changes were also assessed in reservoirs. Population estimates of historical changes in limnological variables were made for all lakes of the northeast United States and also for lakes in the Adirondacks, New England Uplands, and Coastal Lowlands/Plateau ecoregions. The extent of cultural impact has been quite variable among the ecoregions, with marked water quality deterioration occurring in hundreds of lakes. Chloride and phosphorus levels have increased, especially in lakes that currently have high concentrations. Low-pH lakes have become more common in all three ecoregions. The maximum abundance of low-pH lakes was recorded in the Adirondacks, an area receiving the highest acidic precipitation in the northeast. In the Coastal Lowlands/Plateau, there has been a clear increase in eutrophic lakes, as inferred by total phosphorus. This was accompanied by a marked increase in the number of lakes with high chloride levels.

2018 ◽  
Vol 18 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Kwang-Hee Lee ◽  
◽  
Min-Ho Kim ◽  
Nam-Woo An ◽  
Chul-hwi Park

1998 ◽  
Vol 37 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Hany Hassan ◽  
Keisuke Hanaki ◽  
Tomonori Matsuo

Global climate change induced by increased concentrations of greenhouse gases (especially CO2) is expected to include changes in precipitation, wind speed, incoming solar radiation, and air temperature. These major climate variables directly influence water quality in lakes by altering changes in flow and water temperature balance. High concentration of nutrient enrichment and expected variability of climate can lead to periodic phytoplankton blooms and an alteration of the neutral trophic balance. As a result, dissolved oxygen levels, with low concentrations, can fluctuate widely and algal productivity may reach critical levels. In this work, we will present: 1) recent results of GCMs climate scenarios downscaling project that was held at the University of Derby, UK.; 2) current/future comparative results of a new mathematical lake eutrophication model (LEM) in which output of phytoplankton growth rate and dissolved oxygen will be presented for Suwa lake in Japan as a case study. The model parameters were calibrated for the period of 1973–1983 and validated for the period of 1983–1993. Meterologic, hydrologic, and lake water quality data of 1990 were selected for the assessment analysis. Statistical relationships between seven daily meteorological time series and three airflow indices were used as a means for downscaling daily outputs of Hadley Centre Climate Model (HadCM2SUL) to the station sub-grid scale.


2019 ◽  
Vol 55 (4) ◽  
pp. 2708-2721 ◽  
Author(s):  
S. M. Collins ◽  
S. Yuan ◽  
P. N. Tan ◽  
S. K. Oliver ◽  
J. F. Lapierre ◽  
...  

2018 ◽  
Vol 7 (3.23) ◽  
pp. 5
Author(s):  
Muhammad Muzzammil Shahabudin ◽  
Sabariah Musa

Lake water is important to all life and surroundings with multiples benefits and forms either in natural or man-made conditions. One of the most well-known tools for assessing the water quality is Water Quality Index (WQI) and widely used including Malaysia. Lake water quality should be represented in lucid way like other surface water regarding to the WQI standards for water quality assessment on lakes. This paper aims to review on lake water quality classification and its uses based on WQI standards in Malaysia. In this review, the uses of WQI for assessing the lake water and functioned of lakes are discussed. Results on pH from 5.0 to 9.2, BOD in mg/l from 0 to 180, COD in mg/l from 5 to 150, SS in mg/l from o to 1800, DO in mg/l from 0 to 8 and AN in mg/l N from -1 to 26. Variety of numbers is due to different loading of pollutions and location. With used of WQI on lake water quality assessments, further action can be taken for the uses on water resources by maintaining the quality. It also will broaden the uses of lake water as alternative of water resources in Malaysia.  


2017 ◽  
Vol 51 (17) ◽  
pp. 9864-9875 ◽  
Author(s):  
S. Ursula Salmon ◽  
Matthew R. Hipsey ◽  
Geoffrey W. Wake ◽  
Gregory N. Ivey ◽  
Carolyn E. Oldham

Sign in / Sign up

Export Citation Format

Share Document