Heterogeneity of ITS1 sequences in the biting midge Culicoides impunctatus (Goetghebuer) suggests a population in Argyll, Scotland, may be genetically distinct

Genome ◽  
2004 ◽  
Vol 47 (3) ◽  
pp. 546-558 ◽  
Author(s):  
Allyson Ritchie ◽  
Alison Blackwell ◽  
Gaynor Malloch ◽  
Brian Fenton

Ribosomal DNA (rDNA) internal transcribed spacer 1 (ITS1) is a useful genomic region for understanding evolutionary and genetic relationships. In the current study, variation in ITS1 from eight Culicoides species was analysed by PCR, DNA restriction analysis, cloning, and sequencing. ITS1 variants were essentially homogenized within a species, as sequences were identical or closely related. However, Culicoides impunctatus ITS1 sequences derived from one (Argyll) of five populations contained considerable genomic diversity. The secondary structure of each ITS1 was computed. The structure aided the production of an accurate alignment and the identification of a large indel. A phylogenetic analysis was performed. Some of the sequences from the diverse Argyll C. impunctatus population were more related to Culicoides imicola, a vector of animal pathogens in the Old World, than they were to the other C. impunctatus sequences. Thus, the rDNA ITS1 regions of individuals in the Argyll C. impunctatus population were not conforming to the general theory of rDNA homogenization through molecular drive.Key words: Culicoides, ITS1, phylogeny, rDNA, secondary structure.

2013 ◽  
Vol 34 (3) ◽  
pp. 253-267 ◽  
Author(s):  
Mauro Tropeano ◽  
Susana Vázquez ◽  
Silvia Coria ◽  
Adrián Turjanski ◽  
Daniel Cicero ◽  
...  

AbstractCold−adapted marine bacteria producing extracellular hydrolytic enzymes are important for their industrial application and play a key role in degradation of particulate organic matter in their natural environment. In this work, members of a previously−obtained protease−producing bacterial collection isolated from different marine sources from Potter Cove (King George Island, South Shetlands) were taxonomically identified and screened for their ability to produce other economically relevant enzymes. Eighty−eight proteolytic bacterial isolates were grouped into 25 phylotypes based on their Amplified Ribosomal DNA Restriction Analysis profiles. The sequencing of the 16S rRNA genes from representative isolates of the phylotypes showed that the predominant culturable protease−producing bacteria belonged to the class Gammaproteobacteria and were affiliated to the genera Pseudomonas, Shewanella, Colwellia, and Pseudoalteromonas, the latter being the predominant group (64% of isolates). In addition, members of the classes Actinobacteria, Bacilli and Flavobacteria were found. Among the 88 isolates screened we detected producers of amylases (21), pectinases (67), cellulases (53), CM−cellulases (68), xylanases (55) and agarases (57). More than 85% of the isolates showed at least one of the extracellular enzymatic activities tested, with some of them producing up to six extracellular enzymes. Our results confirmed that using selective conditions to isolate producers of one extracellular enzyme activity increases the probability of recovering bacteria that will also produce additional extracellular enzymes. This finding establishes a starting point for future programs oriented to the prospecting for biomolecules in Antarctica.


Author(s):  
Josué Martínez-de la Puente ◽  
Bruno Mathieu ◽  
Simon Carpenter ◽  
Thierry Baldet

Oncology ◽  
1979 ◽  
Vol 36 (6) ◽  
pp. 245-247 ◽  
Author(s):  
H.W. Doerr ◽  
A. Künzler ◽  
H. Schmitz

2020 ◽  
Author(s):  
Brenda G. Díaz ◽  
Maria I. Zucchi ◽  
Alessandro. Alves-Pereira ◽  
Caléo P. de Almeida ◽  
Aline C. L. Moraes ◽  
...  

AbstractAcrocomia (Arecaceae) is a genus widely distributed in tropical and subtropical America that has been achieving economic interest due to the great potential of oil production of some of its species. In particular A. aculeata, due to its vocation to supply oil with the same productive capacity as the oil palm even in areas with water deficit. Although eight species are recognized in the genus, the taxonomic classification based on morphology and geographic distribution is still controversial. Knowledge about the genetic diversity and population structure of the species is limited, which has limited the understanding of the genetic relationships and the orientation of management, conservation, and genetic improvement activities of species of the genus. In the present study, we analyzed the genomic diversity and population structure of seven species of Acrocomia including 117 samples of A. aculeata covering a wide geographical area of occurrence, using single nucleotide Polymorphism (SNP) markers originated from Genotyping By Sequencing (GBS). The genetic structure of the Acrocomia species were partially congruent with the current taxonomic classification based on morphological characters, recovering the separation of the species A. aculeata, A. totai, A. crispa and A. intumescens as distinct taxonomic groups. However, the species A. media was attributed to the cluster of A. aculeata while A. hassleri and A. glauscescens were grouped together with A. totai. The species that showed the highest and lowest genetic diversity were A. totai and A. media, respectively. When analyzed separately, the species A. aculeata showed a strong genetic structure, forming two genetic groups, the first represented mainly by genotypes from Brazil and the second by accessions from Central and North American countries. Greater genetic diversity was found in Brazil when compared to the other countries. Our results on the genetic diversity of the genus are unprecedented, as is also establishes new insights on the genomic relationships between Acrocomia species. It is also the first study to provide a more global view of the genomic diversity of A. aculeata. We also highlight the applicability of genomic data as a reference for future studies on genetic diversity, taxonomy, evolution and phylogeny of the Acrocomia genus, as well as to support strategies for the conservation, exploration and breeding of Acrocomia species and in particular A. aculeata.


1988 ◽  
Vol 8 (12) ◽  
pp. 5575-5580
Author(s):  
P Brennwald ◽  
G Porter ◽  
J A Wise

We report the molecular cloning and sequencing of the most abundant trimethylguanosine-capped small nuclear RNA from the fission yeast Schizosaccharomyces pombe, a highly conserved homolog of mammalian U2 small nuclear RNA. This RNA is 186 nucleotides in length, just 2 nucleotides shorter than its human counterpart; this is in contrast to Saccharomyces cerevisiae U2, which is 1,175 nucleotides long. Moreover, the secondary structure of Schizosaccharomyces pombe U2 is virtually identical to that of mammalian U2, including the 3' half of the RNA, which shows limited primary sequence identity. Northern (RNA) blot analysis revealed that the size of this RNA is conserved not only in fission yeasts but in many organisms, including other ascomycetes.


1999 ◽  
Vol 45 (10) ◽  
pp. 879-884 ◽  
Author(s):  
L Halda-Alija ◽  
T C Johnston

More than 900 culturable, heterotrophic aerobic isolates were obtained from the sediments of a forested, pristine stream and analyzed using three classical microbiological tests: API 20E, amplified ribosomal DNA restriction analysis (ARDRA), and fatty acid analysis. Gram-negative bacteria comprised most of the heterotrophic aerobic isolates (66.7%), similar to other oligotrophic environments. The isolates were assigned to the genus level as Pseudomonas, Flavobacterium, Micrococcus, Bacillus, Chromobacterium, Acinetobacter, Alcaligenes, Aeromonas, Methylobacterium, Enterobacter, Corynebacterium, and Sporolactobacillus. Genotypic analysis by ARDRA facilitated the comparison among strains within Pseudomonas, Bacillus, and Enterobacter groups. Temperature and predation may influence the survival of bacteria during seasons, as shown previously by others. Our results showed that the number of heterotrophic aerobic bacteria, especially Enterobacter, Alcaligenes, and Aeromonas, and Gram-positive bacteria, decreased in winter compared to summer conditions.Key words: stream, heterotrophic aerobic bacteria, ARDRA.


Sign in / Sign up

Export Citation Format

Share Document