Identification and comparative analysis of accessory gland proteins in Orthoptera

Genome ◽  
2006 ◽  
Vol 49 (9) ◽  
pp. 1069-1080 ◽  
Author(s):  
W. Evan Braswell ◽  
José A. Andrés ◽  
Luana S. Maroja ◽  
Richard G. Harrison ◽  
Daniel J. Howard ◽  
...  

Accessory reproductive gland proteins (Acps) in Drosophila evolve quickly and appear to play an important role in ensuring the fertilization success of males. Moreover, Acps are thought to be involved in establishing barriers to fertilization between closely related species. While accessory glands are known to occur in the males of many insect groups, the proteins that are passed on to females by males during mating have not been well characterized outside of Drosophila. To gain a better understanding of these proteins, we characterized ESTs from the accessory glands of two cricket species, Allonemobius fasciatus and Gryllus firmus. Using an expressed sequence tag (EST) approach, followed by bioinformatic and evolutionary analyses, we found that many proteins are secreted and, therefore, available for transfer to the female during mating. Further, we found that most ESTs are novel, showing little sequence similarity between taxa. Evolutionary analyses suggest that cricket proteins are subject to diversifying selection and indicate that Allonemobius is much less polymorphic than Gryllus. Despite rapid nucleotide sequence divergence, there appears to be functional conservation of protein classes among Drosophila and cricket taxa.

2017 ◽  
Vol 2 ◽  
pp. 73 ◽  
Author(s):  
Muna F. Abry ◽  
Kelvin M. Kimenyi ◽  
Daniel K Masiga ◽  
Benard W. Kulohoma

Accessory gland proteins (ACPs) are important reproductive proteins produced by the male accessory glands (MAGs) of most insect species. These proteins are essential for male insect fertility, and are transferred alongside semen to females during copulation. ACPs are poorly characterized in Glossina species (tsetse fly), the principal vector of the parasite that causes life-threatening Human African Trypanosomiasis and Animal trypanosomiasis in endemic regions in Africa. The tsetse fly has a peculiar reproductive cycle because of the absence of oviposition. Females mate once and store sperm in a spermathecal, and produce a single fully developed larva at a time that pupates within minutes of exiting their uterus. This slow reproductive cycle, compared to other insects, significantly restricts reproduction to only 3 to 6 larvae per female lifespan. This unique reproductive cycle is an attractive vector control strategy entry point. We exploit comparative genomics approaches to explore the diversity of ACPs in the recently available whole genome sequence data from five tsetse fly species ( Glossina morsitans, G. austeni, G. brevipalpis, G. pallidipes and G. fuscipes). We used previously described ACPs in Drosophila melanogaster and Anopheles gambiae as reference sequences. We identified 36, 27, 31, 29 and 33 diverse ACP orthologous genes in G. austeni, G. brevipalpis, G. fuscipes, G. pallidipes and G. morsitans genomes respectively, which we classified into 21 functional classes. Our findings provide genetic evidence of MAG proteins in five recently sequenced Glossina genomes. It highlights new avenues for molecular studies that evaluate potential field control strategies of these important vectors of human and animal disease.


2017 ◽  
Vol 2 ◽  
pp. 73 ◽  
Author(s):  
Muna F. Abry ◽  
Kelvin M. Kimenyi ◽  
Daniel K Masiga ◽  
Benard W. Kulohoma

Accessory gland proteins (ACPs) are important reproductive proteins produced by the male accessory glands (MAGs) of most insect species. These proteins are essential for male insect fertility, and are transferred alongside semen to females during copulation. ACPs are poorly characterized in Glossina species (tsetse fly), the principal vector of the parasite that causes life-threatening Human African Trypanosomiasis and Animal trypanosomiasis in endemic regions in Africa. The tsetse fly has a peculiar reproductive cycle because of the absence of oviposition. Females mate once and store sperm in a spermathecal, and produce a single fully developed larva at a time that pupates within minutes of exiting their uterus. This slow reproductive cycle, compared to other insects, significantly restricts reproduction to only 3 to 6 larvae per female lifespan. This unique reproductive cycle is an attractive vector control strategy entry point. We exploit comparative genomics approaches to explore the diversity of ACPs in the recently available whole genome sequence data from five tsetse fly species (Glossina morsitans, G. austeni, G. brevipalpis, G. pallidipes and G. fuscipes). We used previously described ACPs in Drosophila melanogaster and Anopheles gambiae as reference sequences. We identified 36, 27, 31, 29 and 33 diverse ACP orthologous genes in G. austeni, G. brevipalpis, G. fuscipes, G. pallidipes and G. morsitans genomes respectively, which we classified into 21 functional classes. Our findings provide genetic evidence of MAG proteins in five recently sequenced Glossina genomes. It provides new avenues for molecular studies that evaluate potential field control strategies of these important vectors of human and animal disease.


2019 ◽  
Author(s):  
Clément Immarigeon ◽  
François Karch ◽  
Robert K. Maeda

ABSTRACTTo appreciate the function of an organ, it is often critical to understand the role of rare cell populations. Unfortunately, this rarity often makes it difficult to obtain material for study. This is the case for the Drosophila male accessory gland, the functional homolog of mammalian prostate and seminal vesicle. In Drosophila, this gland is made up of two morphologically distinct cell types: the polygonally-shaped main cells, which compose 96% of the organ, and the larger, vacuole-containing secondary cells (SCs), which represent the remaining 4% of cells (~40 cells per lobe). Both cell types are known to produce accessory gland proteins (Acps), which are important components of the seminal fluid and are responsible for triggering multiple physiological and behavioral processes in females, collectively called the post-mating response (PMR). While a few genes are known to be specific to the SCs, the relative rarity of SCs has hindered the study of their whole transcriptome. Here, a method allowing for the isolation of SCs is presented, enabling the extraction and sequencing of RNAs from this rare cell population. The protocol consists of dissection, protease digestion and mechanical dissociation of the glands to obtain individual cells. Then, the cells are sorted by FACS, and living GFP-expressing SC singulets are isolated for RNA extraction. This procedure is able to provide SC-specific RNAs from ~40 males per condition in the course of one day. Given the speed and low number of flies required, this method enables the use of downstream RT-qPCR and/or RNA sequencing to the study gene expression in the SCs from different genetic backgrounds, ages, mating statuses or environmental conditions.SUMMARYHere, we describe the dissociation and sorting of a specific cell population from the Drosophila male accessory glands (Secondary cells), followed by RNA extraction for sequencing and RT-qPCR. The dissociation consists of dissection, proteases digestion and mechanical dispersion, followed by FACS purification of GFP-expressing cells.


Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 167-178 ◽  
Author(s):  
Rhonda R Snook ◽  
Sophia Y Cleland ◽  
Mariana F Wolfner ◽  
Timothy L Karr

AbstractInfection in Drosophila simulans with the endocellular symbiont Wolbachia pipientis results in egg lethality caused by failure to properly initiate diploid development (cytoplasmic incompatibility, CI). The relationship between Wolbachia infection and reproductive factors influencing male fitness has not been well examined. Here we compare infected and uninfected strains of D. simulans for (1) sperm production, (2) male fertility, and (3) the transfer and processing of two accessory gland proteins, Acp26Aa or Acp36De. Infected males produced significantly fewer sperm cysts than uninfected males over the first 10 days of adult life, and infected males, under varied mating conditions, had lower fertility compared to uninfected males. This fertility effect was due to neither differences between infected and uninfected males in the transfer and subsequent processing of accessory gland proteins by females nor to the presence of Wolbachia in mature sperm. We found that heat shock, which is known to decrease CI expression, increases sperm production to a greater extent in infected compared to uninfected males, suggesting a possible link between sperm production and heat shock. Given these results, the roles Wolbachia and heat shock play in mediating male gamete production may be important parameters for understanding the dynamics of infection in natural populations.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4499 ◽  
Author(s):  
Aisha Tahir ◽  
Fatma Hussain ◽  
Nisar Ahmed ◽  
Abdolbaset Ghorbani ◽  
Amer Jamil

In pursuit of developing fast and accurate species-level molecular identification methods, we tested six DNA barcodes, namely ITS2, matK, rbcLa, ITS2+matK, ITS2+rbcLa, matK+rbcLa and ITS2+matK+rbcLa, for their capacity to identify frequently consumed but geographically isolated medicinal species of Fabaceae and Poaceae indigenous to the desert of Cholistan. Data were analysed by BLASTn sequence similarity, pairwise sequence divergence in TAXONDNA, and phylogenetic (neighbour-joining and maximum-likelihood trees) methods. Comparison of six barcode regions showed that ITS2 has the highest number of variable sites (209/360) for tested Fabaceae and (106/365) Poaceae species, the highest species-level identification (40%) in BLASTn procedure, distinct DNA barcoding gap, 100% correct species identification in BM and BCM functions of TAXONDNA, and clear cladding pattern with high nodal support in phylogenetic trees in both families. ITS2+matK+rbcLa followed ITS2 in its species-level identification capacity. The study was concluded with advocating the DNA barcoding as an effective tool for species identification and ITS2 as the best barcode region in identifying medicinal species of Fabaceae and Poaceae. Current research has practical implementation potential in the fields of pharmaco-vigilance, trade of medicinal plants and biodiversity conservation.


2018 ◽  
Author(s):  
E. Prince ◽  
M. Brankatschk ◽  
B. Kroeger ◽  
D. Gligorov ◽  
C. Wilson ◽  
...  

AbstractIt is known that the male seminal fluid contains factors that affect female post-mating behavior and physiology. In Drosophila, most of these factors are secreted by the two epithelial cell types that make up the male accessory gland: the main and secondary cells. Although secondary cells represent only 4% of the cells of the accessory gland, their contribution to the male seminal fluid is essential for sustaining the female post-mating response. To better understand the function of the secondary cells, here we investigate their molecular organization, particularly with respect to the intracellular membrane transport machinery. We determined that large vacuole-like structures found in the secondary cells are trafficking hubs labeled by Rab6, 7, 11 and 19. Furthermore, these cell-specific organelles are essential for the long-term post-mating behavior of females and that their formation is directly dependent upon Rab6. Our discovery adds to our understanding of Rab proteins function in secretory cells. We have created an online, open-access imaging resource as a valuable tool for the intracellular membrane and protein traffic community.


2009 ◽  
Vol 37 (4) ◽  
pp. 778-782 ◽  
Author(s):  
Macarena Toll-Riera ◽  
Robert Castelo ◽  
Nicolás Bellora ◽  
M. Mar Albà

Genomes contain a large number of genes that do not have recognizable homologues in other species. These genes, found in only one or a few closely related species, are known as orphan genes. Their limited distribution implies that many of them are probably involved in lineage-specific adaptive processes. One important question that has remained elusive to date is how orphan genes originate. It has been proposed that they might have arisen by gene duplication followed by a period of very rapid sequence divergence, which would have erased any traces of similarity to other evolutionarily related genes. However, this explanation does not seem plausible for genes lacking homologues in very closely related species. In the present article, we review recent efforts to identify the mechanisms of formation of primate orphan genes. These studies reveal an unexpected important role of transposable elements in the formation of novel protein-coding genes in the genomes of primates.


1999 ◽  
Vol 19 (1) ◽  
pp. 873-881 ◽  
Author(s):  
O. N. Danilevskaya ◽  
K. L. Traverse ◽  
N. C. Hogan ◽  
P. G. DeBaryshe ◽  
M. L. Pardue

ABSTRACT The transposable elements HeT-A and TARTconstitute the telomeres of Drosophila chromosomes. Both are non-long terminal repeat (LTR) retrotransposons, sharing the remarkable property of transposing only to chromosome ends. In addition, strong sequence similarity of their gag proteins indicates that these coding regions share a common ancestor. These findings led to the assumption that HeT-A andTART are closely related. However, we now find that these elements produce quite different sets of transcripts. HeT-Aproduces only sense-strand transcripts of the full-length element, whereas TART produces both sense and antisense full-length RNAs, with antisense transcripts in more than 10-fold excess over sense RNA. In addition, features of TART sequence organization resemble those of a subclass of non-LTR elements characterized by unequal terminal repeats. Thus, the ancestral gag sequence appears to have become incorporated in two different types of elements, possibly with different functions in the telomere. HeT-Atranscripts are found in both nuclear and cytoplasmic cell fractions, consistent with roles as both mRNA and transposition template. In contrast, both sense and antisense TART transcripts are almost entirely concentrated in nuclear fractions. Also,TART open reading frame 2 probes detect a cytoplasmic mRNA for reverse transcriptase (RT), with no similarity to TARTsequence 5′ or 3′ of the RT coding region. This RNA could be a processed TART transcript or the product of a “free-standing” RT gene. Either origin would be novel. The distinctive transcription patterns of both HeT-A andTART are conserved in Drosophila yakuba, despite significant sequence divergence. The conservation argues that these sets of transcripts are important to the function(s) ofHeT-A and TART.


Sign in / Sign up

Export Citation Format

Share Document