orphan genes
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 4)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12600
Author(s):  
Anna V. Klepikova ◽  
Artem S. Kasianov ◽  
Margarita A. Ezhova ◽  
Aleksey A. Penin ◽  
Maria D. Logacheva

The vast diversity of Orchidaceae together with sophisticated adaptations to pollinators and other unique features make this family an attractive model for evolutionary and functional studies. The sequenced genome of Phalaenopsis equestris facilitates Orchidaceae research. Here, we present an RNA-seq-based transcriptome map of P. equestris that covers 19 organs of the plant, including leaves, roots, floral organs and the shoot apical meristem. We demonstrated the high quality of the data and showed the similarity of the P. equestris transcriptome map with the gene expression atlases of other plants. The transcriptome map can be easily accessed through our database Transcriptome Variation Analysis (TraVA) for visualizing gene expression profiles. As an example of the application, we analyzed the expression of Phalaenopsis “orphan” genes–those that do not have recognizable similarity with the genes of other plants. We found that approximately half of these genes were not expressed; the ones that were expressed were predominantly expressed in reproductive structures.


Author(s):  
Timothy B Yates ◽  
Kai Feng ◽  
Jin Zhang ◽  
Vasanth Singan ◽  
Sara S Jawdy ◽  
...  

Abstract Orphan genes are characteristic genomic features that have no detectable homology to genes in any other species and represent an important attribute of genome evolution as sources of novel genetic functions. Here, we identified 445 genes specific to Populus trichocarpa. Of these, we performed deeper reconstruction of 13 orphan genes to provide evidence of de novo gene evolution. Populus and its sister genera Salix are particularly well suited for the study of orphan gene evolution because of the Salicoid whole-genome duplication event (WGD) which resulted in highly syntenic sister chromosomal segments across the Salicaceae. We leveraged this genomic feature to reconstruct de novo gene evolution from inter-genera, inter-species, and intra-genomic perspectives by comparing the syntenic regions within the P. trichocarpa reference, then P. deltoides, and finally Salix purpurea. Furthermore, we demonstrated that 86.5% of the putative orphan genes had evidence of transcription. Additionally, we also utilized the Populus genome-wide association mapping panel (GWAS), a collection of 1,084 undomesticated P. trichocarpa genotypes to further determine putative regulatory networks of orphan genes using expression quantitative trait loci (eQTL) mapping. Functional enrichment of these eQTL subnetworks identified common biological themes associated with orphan genes such as response to stress and defense response. We also identify a putative cis-element for a de novo gene and leverage conserved synteny to describe evolution of a putative transcription factor binding site. Overall, 45% of orphan genes were captured in trans-eQTL networks.


2021 ◽  
Author(s):  
Somya Mani ◽  
Tsvi Tlusty

Contrary to long-held views, recent evidence indicates that de novo birth of genes is not only possible but is surprisingly prevalent: a substantial fraction of eukaryotic genomes are composed of orphan genes, which show no homology with any conserved genes. And a remarkably large proportion of orphan genes likely originated denovo from non-genic regions. Here, using a parsimonious mathematical model, we investigate the probability and timescale of de novo gene birth due to spontaneous mutations. We trace how an initially non-genic locus accumulates beneficial mutations to become a gene. We sample across a wide range of biologically feasible distributions of fitness effects (DFE) of mutations, and calculate the conditions conducive to gene birth. We find that in a time frame of millions of years, gene birth is highly likely for a wide range of DFEs. Moreover, when we allow DFEs to fluctuate, which is expected given the long time frame, gene birth in the model becomes practically inevitable. This supports the idea that gene birth is a ubiquitous process, and should occur in a wide variety of organisms. Our results also demonstrate that intergenic regions are not inactive and silent but are more like dynamic storehouses of potential genes.


2021 ◽  
Vol 20 (7) ◽  
pp. 1880-1888
Author(s):  
Tian-pu LI ◽  
Li-wen ZHANG ◽  
Ya-qing LI ◽  
Min-sheng YOU ◽  
Qian ZHAO

2020 ◽  
Vol 11 ◽  
Author(s):  
Seth O’Conner ◽  
Ling Li

Plant mitochondrial genomes exhibit unique evolutionary patterns. They have a high rearrangement but low mutation rate, and a large size. Based on massive mitochondrial DNA transfers to the nucleus as well as the mitochondrial unique evolutionary traits, we propose a “Mitochondrial Fostering” theory where the organelle genome plays an integral role in the arrival and development of orphan genes (genes with no homologs in other lineages). Two approaches were used to test this theory: (1) bioinformatic analysis of nuclear mitochondrial DNA (Numts: mitochondrial originating DNA that migrated to the nucleus) at the genome level, and (2) bioinformatic analysis of particular orphan sequences present in both the mitochondrial genome and the nuclear genome of Arabidopsis thaliana. One study example is given about one orphan sequence that codes for two unique orphan genes: one in the mitochondrial genome and another one in the nuclear genome. DNA alignments show regions of this A. thaliana orphan sequence exist scattered throughout other land plant mitochondrial genomes. This is consistent with the high recombination rates of mitochondrial genomes in land plants. This may also enable the creation of novel coding sequences within the orphan loci, which can then be transferred to the nuclear genome and become exposed to new evolutionary pressures. Our study also reveals a high correlation between the amount of mitochondrial DNA transferred to the nuclear genome and the number of orphan genes in land plants. All the data suggests the mitochondrial genome may play a role in nuclear orphan gene evolution in land plants.


2020 ◽  
Author(s):  
Anna V. Klepikova ◽  
Artem S. Kasianov ◽  
Margarita A. Ezhova ◽  
Aleksey A. Penin ◽  
Maria D. Logacheva

AbstractThe vast diversity of Orchidaceae together with sophisticated adaptations to pollinators and other unique features make this family an attractive model for evolutionary and functional studies. The sequenced genome of Phalaenopsis equestris facilitates Orchidaceae research. Here we present an RNA-seq based transcriptome map of P. equestris which covers 19 organs of the plant including leaves, roots, floral organs and shoot apical meristem. We demonstrated the high quality of the data and showed the similarity of P. equestris transcriptome map with gene expression atlases of other plants. The transcriptome map can be easily accessed through our database Transcriptome Variation Analysis (TraVA) visualizing gene expression profiles. As an example of the application we analyzed the expression of Phalaenopsis “orphan” genes – the ones that do not have recognizable similarity with genes of other plants. We found that about a half of them are not expressed; the ones that are expressed have a predominant expression pattern in reproductive structures.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Mingliang Jiang ◽  
Zongxiang Zhan ◽  
Haiyan Li ◽  
Xiangshu Dong ◽  
Feng Cheng ◽  
...  

Abstract Orphan genes (OGs), which are genes unique to a specific taxon, play a vital role in primary metabolism. However, little is known about the functional significance of Brassica rapa OGs (BrOGs) that were identified in our previous study. To study their biological functions, we developed a BrOG overexpression (BrOGOE) mutant library of 43 genes in Arabidopsis thaliana and assessed the phenotypic variation of the plants. We found that 19 of the 43 BrOGOE mutants displayed a mutant phenotype and 42 showed a variable soluble sugar content. One mutant, BrOG1OE, with significantly elevated fructose, glucose, and total sugar contents but a reduced sucrose content, was selected for in-depth analysis. BrOG1OE showed reduced expression and activity of the Arabidopsis sucrose synthase gene (AtSUS); however, the activity of invertase was unchanged. In contrast, silencing of two copies of BrOG1 in B. rapa, BraA08002322 (BrOG1A) and BraSca000221 (BrOG1B), by the use of an efficient CRISPR/Cas9 system of Chinese cabbage (B. rapa ssp. campestris) resulted in decreased fructose, glucose, and total soluble sugar contents because of the upregulation of BrSUS1b, BrSUS3, and, specifically, the BrSUS5 gene in the edited BrOG1 transgenic line. In addition, we observed increased sucrose content and SUS activity in the BrOG1 mutants, with the activity of invertase remaining unchanged. Thus, BrOG1 probably affected soluble sugar metabolism in a SUS-dependent manner. This is the first report investigating the function of BrOGs with respect to soluble sugar metabolism and reinforced the idea that OGs are a valuable resource for nutrient metabolism.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Marina Athanasouli ◽  
Hanh Witte ◽  
Christian Weiler ◽  
Tobias Loschko ◽  
Gabi Eberhardt ◽  
...  

Abstract Background Nematode model organisms such as Caenorhabditis elegans and Pristionchus pacificus are powerful systems for studying the evolution of gene function at a mechanistic level. However, the identification of P. pacificus orthologs of candidate genes known from C. elegans is complicated by the discrepancy in the quality of gene annotations, a common problem in nematode and invertebrate genomics. Results Here, we combine comparative genomic screens for suspicious gene models with community-based curation to further improve the quality of gene annotations in P. pacificus. We extend previous curations of one-to-one orthologs to larger gene families and also orphan genes. Cross-species comparisons of protein lengths, screens for atypical domain combinations and species-specific orphan genes resulted in 4311 candidate genes that were subject to community-based curation. Corrections for 2946 gene models were implemented in a new version of the P. pacificus gene annotations. The new set of gene annotations contains 28,896 genes and has a single copy ortholog completeness level of 97.6%. Conclusions Our work demonstrates the effectiveness of comparative genomic screens to identify suspicious gene models and the scalability of community-based approaches to improve the quality of thousands of gene models. Similar community-based approaches can help to improve the quality of gene annotations in other invertebrate species, including parasitic nematodes.


2020 ◽  
Vol 11 ◽  
Author(s):  
Qijuan Gao ◽  
Xiu Jin ◽  
Enhua Xia ◽  
Xiangwei Wu ◽  
Lichuan Gu ◽  
...  

2020 ◽  
Author(s):  
Marina Athanasouli ◽  
Hanh Witte ◽  
Christian Weiler ◽  
Tobias Loschko ◽  
Gabi Eberhardt ◽  
...  

AbstractBackgroundNematode model organisms such as Caenorhabditis elegans and Pristionchus pacificus are powerful systems for studying the evolution of gene function at a mechanistic level. However, the identification of P. pacificus orthologs of candidate genes known from C. elegans is complicated by the discrepancy in the quality of gene annotations, a common problem in nematode and invertebrate genomics.ResultsHere, we combine comparative genomic screens for suspicious gene models with community-based curation to further improve the quality of gene annotations in P. pacificus. We extend previous curations of one-to-one orthologs to larger gene families and also orphan genes. Cross-species comparisons of protein lengths and screens for atypical domain combinations and species-specific orphan genes resulted in 4,221 candidate genes that were subject to community-based curation. Corrections for 2,851 gene models were implemented in a new version of the P. pacificus gene annotations. The new set of gene annotations contains 28,896 genes and has a single copy ortholog completeness level of 97.6%.ConclusionsOur work demonstrates the effectiveness of comparative genomic screens to identify suspicious gene models and the scalability of community-based approaches to improve the quality of thousands of gene models. Similar community-based approaches can help to improve the quality of gene annotations in other invertebrate species, including parasitic nematodes.


Sign in / Sign up

Export Citation Format

Share Document