Evolution of primate orphan proteins

2009 ◽  
Vol 37 (4) ◽  
pp. 778-782 ◽  
Author(s):  
Macarena Toll-Riera ◽  
Robert Castelo ◽  
Nicolás Bellora ◽  
M. Mar Albà

Genomes contain a large number of genes that do not have recognizable homologues in other species. These genes, found in only one or a few closely related species, are known as orphan genes. Their limited distribution implies that many of them are probably involved in lineage-specific adaptive processes. One important question that has remained elusive to date is how orphan genes originate. It has been proposed that they might have arisen by gene duplication followed by a period of very rapid sequence divergence, which would have erased any traces of similarity to other evolutionarily related genes. However, this explanation does not seem plausible for genes lacking homologues in very closely related species. In the present article, we review recent efforts to identify the mechanisms of formation of primate orphan genes. These studies reveal an unexpected important role of transposable elements in the formation of novel protein-coding genes in the genomes of primates.

2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3856-3861 ◽  
Author(s):  
Yong-Cheng Ren ◽  
Yun Wang ◽  
Liang Chen ◽  
Tao Ke ◽  
Feng-Li Hui

Two strains representing Wickerhamiella allomyrinae f.a., sp. nov. were isolated from the gut of Allomyrina dichotoma (Coleoptera: Scarabeidae) collected from the Baotianman National Nature Reserve, Nanyan, Henan Province, China. Sequence analyses of the D1/D2 domains of the LSU rRNA gene revealed that this novel species was located in the Wickerhamiella clade (Saccharomycetes, Saccharomycetales), with three described species of the genus Candida, namely Candida musiphila, Candida spandovensis and Candida sergipensis, as the most closely related species. The novel species differed from these three species by 9.3–9.8 % sequence divergence (35–45 nt substitutions) in the D1/D2 sequences. The species could also be distinguished from the closely related species, C. musiphila, C. spandovensis and C. sergipensis, by growth on vitamin-free medium and at 37 °C. The type strain is Wickerhamiella allomyrinae sp. nov. NYNU 13920T ( = CICC 33031T = CBS 13167T).


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Tingting Zhang ◽  
Yanping Xing ◽  
Liang Xu ◽  
Guihua Bao ◽  
Zhilai Zhan ◽  
...  

Abstract Background Baitouweng is a traditional Chinese medicine with a long history of different applications. Although referred to as a single medicine, Baitouweng is actually comprised of many closely related species. It is therefore critically important to identify the different species that are utilized in these medicinal applications. Knowledge about their phylogenetic relationships can be derived from their chloroplast genomes and may provide additional insights into development of molecular markers. Methods Genomic DNA was extracted from six species of Pulsatilla and then sequenced on an Illumina HiSeq 4000. Sequences were assembled into contigs by SOAPdenovo 2.04, aligned to the reference genome using BLAST, and then manually corrected. Genome annotation was performed by the online DOGMA tool. General characteristics of the cp genomes of the six species were analyzed and compared with closely related species. Additionally, phylogenetic trees were constructed, based on single nucleotide polymorphisms (SNPs) and 51 shared protein-coding gene sequences in the cp genome among all 31 species via maximum likelihood. Results The size of cp genomes of P. chinensis (Bge.) Regel, P. chinensis (Bge.) Regel var. kissii (Mandl) S. H. Li et Y. H. Huang, P. cernua (Thunb.) Bercht. et Opiz f. plumbea J. X. Ji et Y. T. zhao, P. dahurica (Fisch.) Spreng, P. turczaninovii Kryl. et Serg, and P. cernua (Thunb.) Bercht. et Opiz. were 163,851 bp, 163,756 bp, 162,481 bp, 162,450 bp, 162,795 bp, and 162,924 bp, respectively. Each species included two inverted repeat regions, a small single-copy region, and a large single-copy region. A total of 134 genes were annotated, including 90 protein-coding genes, 36 tRNAs, and eight rRNAs across all species. In simple sequence repeat analysis, only P. dahurica was found to contain hexanucleotide repeats. A total of 26, 39, 32, 37, 32 and 43 large repeat sequences were identified in the genic regions of the six Pulsatilla species. Nucleotide diversity analysis revealed that the rpl36 gene and ccsA-ndhD region have the highest Pi value. In addition, two phylogenetic trees of the cp genomes were constructed, which laced all Pulsatilla species into one branch within Ranunculaceae. Conclusions We identified and analyzed the cp genome features of six species of P. Miller, with implications for species identification and phylogenetic analysis.


2011 ◽  
Vol 29 (3) ◽  
pp. 883-886 ◽  
Author(s):  
M. Toll-Riera ◽  
N. Rado-Trilla ◽  
F. Martys ◽  
M. M. Alba

2000 ◽  
Vol 68 (12) ◽  
pp. 7180-7185 ◽  
Author(s):  
O. Colin Stine ◽  
Shanmuga Sozhamannan ◽  
Qing Gou ◽  
Siqen Zheng ◽  
J. Glenn Morris ◽  
...  

ABSTRACT We sequenced a 705-bp fragment of the recA gene from 113 Vibrio cholerae strains and closely related species. One hundred eighty-seven nucleotides were phylogenetically informative, 55 were phylogenetically uninformative, and 463 were invariant. Not unexpectedly, Vibrio parahaemolyticus and Vibrio vulnificus strains formed out-groups; we also identified isolates which resembled V. cholerae biochemically but which did not cluster with V. cholerae. In many instances, V. cholerae serogroup designations did not correlate with phylogeny, as reflected by recA sequence divergence. This observation is consistent with the idea that there is horizontal transfer of O-antigen biosynthesis genes among V. cholerae strains.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Salabi ◽  
Hedieh Jafari ◽  
Shahrokh Navidpour ◽  
Ayeh Sadat Sadr

AbstractThe potential function of long non-coding RNAs in regulating neighbor protein-coding genes has attracted scientists’ attention. Despite the important role of lncRNAs in biological processes, a limited number of studies focus on non-model animal lncRNAs. In this study, we used a stringent step-by-step filtering pipeline and machine learning-based tools to identify the specific Androctonus crassicauda lncRNAs and analyze the features of predicted scorpion lncRNAs. 13,401 lncRNAs were detected using pipeline in A. crassicauda transcriptome. The blast results indicated that the majority of these lncRNAs sequences (12,642) have no identifiable orthologs even in closely related species and those considered as novel lncRNAs. Compared to lncRNA prediction tools indicated that our pipeline is a helpful approach to distinguish protein-coding and non-coding transcripts from RNA sequencing data of species without reference genomes. Moreover, analyzing lncRNA characteristics in A. crassicauda uncovered that lower protein-coding potential, lower GC content, shorter transcript length, and less number of isoform per gene are outstanding features of A. crassicauda lncRNAs transcripts.


2022 ◽  
Author(s):  
Leeban Yusuf ◽  
Venera Tyukmaeva ◽  
Anneli Hoikkala ◽  
Michael G Ritchie

Speciation with gene flow is now widely regarded as common. However, the frequency of introgression between recently diverged species and the evolutionary consequences of gene flow are still poorly understood. The virilis group of Drosophila contains around a dozen species that are geographically widespread and show varying levels of pre-zygotic and post-zygotic isolation. Here, we utilize de novo genome assemblies and whole-genome sequencing data to resolve phylogenetic relationships and describe patterns of introgression and divergence across the group. We suggest that the virilis group consists of three, rather than the traditional two, subgroups. We found evidence of pervasive phylogenetic discordance caused by ancient introgression events between distant lineages within the group, and much more recent gene flow between closely-related species. When assessing patterns of genome-wide divergence in species pairs across the group, we found no consistent genomic evidence of a disproportionate role for the X chromosome. Some genes undergoing rapid sequence divergence across the group were involved in chemical communication and may be related to the evolution of sexual isolation. We suggest that gene flow between closely-related species has potentially had an impact on lineage-specific adaptation and the evolution of reproductive barriers. Our results show how ancient and recent introgression confuse phylogenetic reconstruction, and suggest that shared variation can facilitate adaptation and speciation.


2019 ◽  
Author(s):  
Hsin-Han Lee ◽  
Huei-Mien Ke ◽  
Chan-Yi Ivy Lin ◽  
Tracy J. Lee ◽  
Chia-Lin Chung ◽  
...  

AbstractComparative genomics of fungal mitochondrial genomes (mitogenomes) have revealed a remarkable pattern of rearrangement between and within major phyla owing to horizontal gene transfer (HGT) and recombination. The role of recombination was exemplified at a finer evolutionary time scale in basidiomycetes group of fungi as they display a diversity of mitochondrial DNA (mtDNA) inheritance patterns. Here, we assembled mitogenomes of six species from the Hymenochaetales order of basidiomycetes and examined 59 mitogenomes from two genetic lineages ofPyrrhoderma noxium. Gene order is largely colinear while intergene regions are major determinants of mitogenome size variation. Substantial sequence divergence was found in shared introns consistent with high HGT frequency observed in yeasts, but we also identified a rare case where an intron was retained in five species since speciation. In contrast to the hyperdiversity observed in nuclear genomes ofP. noxium, mitogenomes’ intraspecific polymorphisms at protein coding sequences are extremely low. Phylogeny based on introns revealed turnover as well as exchange of introns between two lineages. Strikingly, some strains harbor a mosaic origin of introns from both lineages. Analysis of intergenic sequence indicated substantial differences between and within lineages, and an expansion may be ongoing as a result of exchange between distal intergenes. These findings suggest that the evolution in mtDNAs is usually lineage specific but chimeric mitotypes are frequently observed, thus capturing the possible evolutionary processes shaping mitogenomes in a basidiomycete. The large mitogenome sizes reported in various basidiomycetes appear to be a result of interspecific reshuffling of intergenes.


2019 ◽  
Vol 37 (1) ◽  
pp. 260-279 ◽  
Author(s):  
Carina F Mugal ◽  
Verena E Kutschera ◽  
Fidel Botero-Castro ◽  
Jochen B W Wolf ◽  
Ingemar Kaj

Abstract The ratio of nonsynonymous over synonymous sequence divergence, dN/dS, is a widely used estimate of the nonsynonymous over synonymous fixation rate ratio ω, which measures the extent to which natural selection modulates protein sequence evolution. Its computation is based on a phylogenetic approach and computes sequence divergence of protein-coding DNA between species, traditionally using a single representative DNA sequence per species. This approach ignores the presence of polymorphisms and relies on the indirect assumption that new mutations fix instantaneously, an assumption which is generally violated and reasonable only for distantly related species. The violation of the underlying assumption leads to a time-dependence of sequence divergence, and biased estimates of ω in particular for closely related species, where the contribution of ancestral and lineage-specific polymorphisms to sequence divergence is substantial. We here use a time-dependent Poisson random field model to derive an analytical expression of dN/dS as a function of divergence time and sample size. We then extend our framework to the estimation of the proportion of adaptive protein evolution α. This mathematical treatment enables us to show that the joint usage of polymorphism and divergence data can assist the inference of selection for closely related species. Moreover, our analytical results provide the basis for a protocol for the estimation of ω and α for closely related species. We illustrate the performance of this protocol by studying a population data set of four corvid species, which involves the estimation of ω and α at different time-scales and for several choices of sample sizes.


1997 ◽  
Vol 352 (1352) ◽  
pp. 519-529 ◽  
Author(s):  
Trevor Price

The use of the independent contrast method in comparative tests is studied. It is assumed that: (i) the traits under investigation are subject to natural selection; (ii) closely related species are similar because they share many characteristics of their niche, inherited from a common ancestor; and (iii) the current adaptive significance of the traits is the focus of investigation. The main objection to the use of species values in this case is that third variables which are shared by closely related species confound the relationship between the focal traits. In this paper, I argue that third variables are largely not controlled by the contrast methods, which are designed to estimate correlated evolution. To the extent that third variables also show correlated evolution, the true relationship among the traits of interest will remain obscured. Although the independent contrast method does not resolve the influence of third traits it does, in principle, provide a greater resolution than the use of the species mean values. However, its validity depends on the applicability of an evolutionary model which has a substantial stochastic component. To illustrate the consequences of relaxing this assumption I consider an alternative model on an adaptive radiation, where species come to fill a fixed niche space. Under this model, the expected value for the contrast correlation differs from that for the species correlation. The two correlations differ because contrasts reflect the historical pattern of diversification among species, whereas the species values describe the present–day relationships among the species. If the latter is of interest, I suggest that assessing significance based on the species correlations can be justified, providing that attention is paid to the role of potentially confounding third traits. Often, differences between contrast and species correlations may be biologically informative, reflecting changes in correlations between traits as an adaptive radiation proceeds; contrasts may be particularly useful as a means of investigating past history, rather than current utility of traits.


Sign in / Sign up

Export Citation Format

Share Document