Evidence that the spindle assembly checkpoint does not regulate APCFzy activity in Drosophila female meiosis

Genome ◽  
2012 ◽  
Vol 55 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Osamah Batiha ◽  
Andrew Swan

The spindle assembly checkpoint (SAC) plays an important role in mitotic cells to sense improper chromosome attachment to spindle microtubules and to inhibit APCFzy-dependent destruction of cyclin B and Securin; consequent initiation of anaphase until correct attachments are made. In Drosophila , SAC genes have been found to play a role in ensuring proper chromosome segregation in meiosis, possibly reflecting a similar role for the SAC in APCFzy inhibition during meiosis. We found that loss of function mutations in SAC genes, Mad2, zwilch, and mps1, do not lead to the predicted rise in APCFzy-dependent degradation of cyclin B either globally throughout the egg or locally on the meiotic spindle. Further, the SAC is not responsible for the inability of APCFzy to target cyclin B and promote anaphase in metaphase II arrested eggs from cort mutant females. Our findings support the argument that SAC proteins play checkpoint independent roles in Drosophila female meiosis and that other mechanisms must function to control APC activity.

Reproduction ◽  
2016 ◽  
Vol 152 (1) ◽  
pp. R15-R22 ◽  
Author(s):  
Josie K Collins ◽  
Keith T Jones

DNA damage acquired during meiosis can lead to infertility and miscarriage. Hence, it should be important for an oocyte to be able to detect and respond to such events in order to make a healthy egg. Here, the strategies taken by oocytes during their stages of growth to respond to DNA damaging events are reviewed. In particular, recent evidence of a novel pathway in fully grown oocytes helps prevent the formation of mature eggs with DNA damage. It has been found that fully grown germinal vesicle stage oocytes that have been DNA damaged do not arrest at this point in meiosis, but instead undergo meiotic resumption and stall during the first meiotic division. The Spindle Assembly Checkpoint, which is a well-known mitotic pathway employed by somatic cells to monitor chromosome attachment to spindle microtubules, appears to be utilised by oocytes also to respond to DNA damage. As such maturing oocytes are arrested at metaphase I due to an active Spindle Assembly Checkpoint. This is surprising given this checkpoint has been previously studied in oocytes and considered to be weak and ineffectual because of its poor ability to be activated in response to microtubule attachment errors. Therefore, the involvement of the Spindle Assembly Checkpoint in DNA damage responses of mature oocytes during meiosis I uncovers a novel second function for this ubiquitous cellular checkpoint.


2020 ◽  
Author(s):  
Paula Vazquez-Pianzola ◽  
Dirk Beuchle ◽  
Gabriela Saro ◽  
Greco Hernández ◽  
Giovanna Maldonado ◽  
...  

ABSTRACTVertebrate Clathrin heavy chain (Chc) plays a moonlighting function during mitosis. Chc forms a complex with TACC3 (Transforming Acidic Coiled Coil 3) and ch-TOG (colonic hepatic tumor overexpressed gene) at the spindle microtubules, forming inter microtubule bridges that stabilize the K-fibers. Since Drosophila Chc is a cargo of the dynein adaptor Bicaudal-D (BicD), we investigated whether BicD regulates Clathrin function at the spindle. We found that BicD localizes, like Chc, to centrosomes and spindles during mitosis and meiosis II, and that Chc interacts with Drosophila TACC (D-TACC). Using deGradFP to reduce the activity of BicD in mature eggs and very young embryos, we uncovered a novel function of BicD in meiosis II. The affected meiosis II products underwent abnormal rounds of additional replications and failed to carry out pronuclear fusion. Pointing to a mechanism, we found that the localization of Clathrin/D-TACC/Minispindles (Msps, homolog of ch-TOG) to the meiosis II spindles was impaired upon BicD knockdown. Furthermore, the meiotic products showed abnormal staining for PH3 and reduced recruitment of spindle assembly checkpoint (SAC) components. Altogether, our results support the notion that BicD performs a key activity in assembling the meiotic spindle apparatus. This function of BicD seems conserved in evolution because C. elegans embryos with reduced activities of these genes developed comparable phenotypes.


2017 ◽  
Vol 216 (12) ◽  
pp. 3949-3957 ◽  
Author(s):  
Simon I.R. Lane ◽  
Keith T. Jones

The spindle assembly checkpoint (SAC) prevents chromosome missegregation by coupling anaphase onset with correct chromosome attachment and tension to microtubules. It does this by generating a diffusible signal from free kinetochores into the cytoplasm, inhibiting the anaphase-promoting complex (APC). The volume in which this signal remains effective is unknown. This raises the possibility that cell volume may be the reason the SAC is weak, and chromosome segregation error-prone, in mammalian oocytes. Here, by a process of serial bisection, we analyzed the influence of oocyte volume on the ability of the SAC to inhibit bivalent segregation in meiosis I. We were able to generate oocytes with cytoplasmic volumes reduced by 86% and observed changes in APC activity consistent with increased SAC control. However, bivalent biorientation remained uncoupled from APC activity, leading to error-prone chromosome segregation. We conclude that volume is one factor contributing to SAC weakness in oocytes. However, additional factors likely uncouple chromosome biorientation with APC activity.


2013 ◽  
Vol 25 (3) ◽  
pp. 472 ◽  
Author(s):  
Zbigniew Polanski

The spindle assembly checkpoint (SAC) is a surveillance mechanism that monitors the quality of the spindle during division and blocks anaphase entry in the presence of anomalies that could result in erroneous segregation of the chromosomes. Because human aneuploidy is mainly linked to the erroneous segregation of genetic material in oocytes, the issue of the effectiveness of the SAC in female meiosis is especially important. The present review summarises our understanding of the SAC control of mammalian oocyte meiosis, including its possible impact on the incidence of embryonic aneuploidy. Owing to the peculiarities of cell cycle control in female meiosis, the integration of the SAC within such a specific environment results in several unusual situations, which are also discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dalileh Nabi ◽  
Hauke Drechsler ◽  
Johannes Pschirer ◽  
Franz Korn ◽  
Nadine Schuler ◽  
...  

AbstractProper chromosome segregation is essential to avoid aneuploidy, yet this process fails with increasing age in mammalian oocytes. Here we report a role for the scarcely described protein CENP-V in oocyte spindle formation and chromosome segregation. We show that depending on the oocyte maturation state, CENP-V localizes to centromeres, to microtubule organizing centers, and to spindle microtubules. We find that Cenp-V−/− oocytes feature severe deficiencies, including metaphase I arrest, strongly reduced polar body extrusion, increased numbers of mis-aligned chromosomes and aneuploidy, multipolar spindles, unfocused spindle poles and loss of kinetochore spindle fibres. We also show that CENP-V protein binds, diffuses along, and bundles microtubules in vitro. The spindle assembly checkpoint arrests about half of metaphase I Cenp-V−/− oocytes from young adults only. This finding suggests checkpoint weakening in ageing oocytes, which mature despite carrying mis-aligned chromosomes. Thus, CENP-V is a microtubule bundling protein crucial to faithful oocyte meiosis, and Cenp-V−/− oocytes reveal age-dependent weakening of the spindle assembly checkpoint.


1998 ◽  
Vol 142 (3) ◽  
pp. 751-761 ◽  
Author(s):  
Silvia Bonaccorsi ◽  
Maria Grazia Giansanti ◽  
Maurizio Gatti

While Drosophila female meiosis is anastral, both meiotic divisions in Drosophila males exhibit prominent asters. We have identified a gene we call asterless (asl) that is required for aster formation during male meiosis. Ultrastructural analysis showed that asl mutants have morphologically normal centrioles. However, immunostaining with antibodies directed either to γ tubulin or centrosomin revealed that these proteins do not accumulate in the centrosomes, as occurs in wild-type. Thus, asl appears to specify a function required for the assembly of centrosomal material around the centrioles. Despite the absence of asters, meiotic cells of asl mutants manage to develop an anastral spindle. Microtubules grow from multiple sites around the chromosomes, and then focus into a peculiar bipolar spindle that mediates chromosome segregation, although in a highly irregular way. Surprisingly, asl spermatocytes eventually form a morphologically normal ana–telophase central spindle that has full ability to stimulate cytokinesis. These findings challenge the classical view on central spindle assembly, arguing for a self-organization of this structure from either preexisting or newly formed microtubules. In addition, these findings strongly suggest that the asters are not required for signaling cytokinesis.


2011 ◽  
Vol 44 (5) ◽  
pp. 391-400 ◽  
Author(s):  
P. Silva ◽  
J. Barbosa ◽  
A. V. Nascimento ◽  
J. Faria ◽  
R. Reis ◽  
...  

2019 ◽  
Vol 219 (2) ◽  
Author(s):  
Cai Liang ◽  
Zhenlei Zhang ◽  
Qinfu Chen ◽  
Haiyan Yan ◽  
Miao Zhang ◽  
...  

Aurora B kinase plays an essential role in chromosome bi-orientation, which is a prerequisite for equal segregation of chromosomes during mitosis. However, it remains largely unclear whether centromere-localized Aurora B is required for faithful chromosome segregation. Here we show that histone H3 Thr-3 phosphorylation (H3pT3) and H2A Thr-120 phosphorylation (H2ApT120) can independently recruit Aurora B. Disrupting H3pT3-mediated localization of Aurora B at the inner centromere impedes the decline in H2ApT120 during metaphase and causes H2ApT120-dependent accumulation of Aurora B at the kinetochore-proximal centromere. Consequently, silencing of the spindle assembly checkpoint (SAC) is delayed, whereas the fidelity of chromosome segregation is negligibly affected. Further eliminating an H2ApT120-dependent pool of Aurora B restores proper timing for SAC silencing but increases chromosome missegregation. Our data indicate that H2ApT120-mediated localization of Aurora B compensates for the loss of an H3pT3-dependent pool of Aurora B to correct improper kinetochore–microtubule attachments. This study provides important insights into how centromeric Aurora B regulates SAC and kinetochore attachment to microtubules to ensure error-free chromosome segregation.


Sign in / Sign up

Export Citation Format

Share Document