RELATIONSHIP OF TAXA IN THE GENUS MEDICAGO AS REVEALED BY HYBRIDIZATION. I. M. STRIATA × M. LITTORALIS

1968 ◽  
Vol 10 (2) ◽  
pp. 263-275 ◽  
Author(s):  
K. Lesins ◽  
A. Erac

In crosses between the two taxa Medicago striata Bast, and M. littoralis Rohde a high mortality of gametes and seedlings, and sterility of some plants were noted which were not related to gross chromosomal rearrangements. Although the F1, F2 and F3 generations from reciprocal crosses differed in chlorophyll deficiencies (indicating a cytoplasmic influence) a genic cause became evident from segregations for chlorophyll characters in the F2 and F3. Transference of the cytoplasmic factor by the pollen is indicative.Segregation for pod coiling direction indicated that the character was determined by one or two genetic factors of which the clockwise coiling direction is recessive. The spininess appeared to be determined by one genetic factor, of which the spineless allele is recessive.On the basis of genetic differences (especially on the built-in repulsion systems for normal chlorophyll development of opposite species) the two taxa should be considered two different species.

2021 ◽  
pp. 1-8
Author(s):  
Naiara P. Araújo ◽  
Radarane S. Sena ◽  
Cibele R. Bonvicino ◽  
Gustavo C.S. Kuhn ◽  
Marta Svartman

<i>Proechimys</i> species are remarkable for their extensive chromosome rearrangements, representing a good model to understand genome evolution. Herein, we cytogenetically analyzed 3 different cytotypes of <i>Proechimys</i> gr. <i>goeldii</i> to assess their evolutionary relationship. We also mapped the transposable element SINE-B1 on the chromosomes of <i>P.</i> gr. <i>goeldii</i> in order to investigate its distribution among individuals and evaluate its possible contribution to karyotype remodeling in this species. SINE-B1 showed a dispersed distribution along chromosome arms and was also detected at the pericentromeric regions of some chromosomes, including pair 1 and the sex chromosomes, which are involved in chromosome rearrangements. In addition, we describe a new cytotype for <i>P.</i> gr. <i>goeldii</i>, reinforcing the significant role of gross chromosomal rearrangements during the evolution of the genus. The results of FISH with SINE-B1 suggest that this issue should be more deeply investigated for a better understanding of its role in the mechanisms involved in the wide variety of <i>Proechimys</i> karyotypes.


2001 ◽  
Vol 91 (6) ◽  
pp. 2776-2784 ◽  
Author(s):  
David M. Herrington ◽  
Karen Potvin Klein

There are a number of genetic factors that likely modulate both the beneficial and adverse effects of estrogen. An important domain of consideration is the relationship of estrogen and thrombosis risk. Gene polymorphisms among the key elements of the coagulation and fibrinolytic cascade appear to influence the effects of estrogen on risk for venous thromboembolic events and possibly arterial thrombosis as well. Emerging data also suggest that allelic variants in the estrogen receptor-α may modulate estrogen's effects, especially with respect to bone and lipid metabolism.


2018 ◽  
Vol 115 (43) ◽  
pp. E10041-E10048 ◽  
Author(s):  
J. Brooks Crickard ◽  
Kyle Kaniecki ◽  
Youngho Kwon ◽  
Patrick Sung ◽  
Eric C. Greene

Cross-over recombination products are a hallmark of meiosis because they are necessary for accurate chromosome segregation and they also allow for increased genetic diversity during sexual reproduction. However, cross-overs can also cause gross chromosomal rearrangements and are therefore normally down-regulated during mitotic growth. The mechanisms that enhance cross-over product formation upon entry into meiosis remain poorly understood. In Saccharomyces cerevisiae, the Superfamily 1 (Sf1) helicase Srs2, which is an ATP hydrolysis-dependent motor protein that actively dismantles recombination intermediates, promotes synthesis-dependent strand annealing, the result of which is a reduction in cross-over recombination products. Here, we show that the meiosis-specific recombinase Dmc1 is a potent inhibitor of Srs2. Biochemical and single-molecule assays demonstrate that Dmc1 acts by inhibiting Srs2 ATP hydrolysis activity, which prevents the motor protein from undergoing ATP hydrolysis-dependent translocation on Dmc1-bound recombination intermediates. We propose a model in which Dmc1 helps contribute to cross-over formation during meiosis by antagonizing the antirecombinase activity of Srs2.


Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 291-303 ◽  
Author(s):  
I A.P Parkin ◽  
A G Sharpe ◽  
D J Lydiate

The progenitor diploid genomes (A and C) of the amphidiploid Brassica napus are extensively duplicated with 73% of genomic clones detecting two or more duplicate sequences within each of the diploid genomes. This comprehensive duplication of loci is to be expected in a species that has evolved through a polyploid ancestor. The majority of the duplicate loci within each of the diploid genomes were found in distinct linkage groups as collinear blocks of linked loci, some of which had undergone a variety of rearrangements subsequent to duplication, including inversions and translocations. A number of identical rearrangements were observed in the two diploid genomes, suggesting they had occurred before the divergence of the two species. A number of linkage groups displayed an organization consistent with centric fusion and (or) fission, suggesting this mechanism may have played a role in the evolution of Brassica genomes. For almost every genetically mapped locus detected in the A genome a homologous locus was found in the C genome; the collinear arrangement of these homologous markers allowed the primary regions of homoeology between the two genomes to be identified. At least 16 gross chromosomal rearrangements differentiated the two diploid genomes during their divergence from a common ancestor.Key words: genome evolution, Brassicaeae, polyploidy, homoeologous linkage groups.


2015 ◽  
Author(s):  
Elena Peretokina ◽  
Natalia Mokrysheva ◽  
Lyudmila Rozhinskaya ◽  
Ekaterina Zakharova

2020 ◽  
Vol 005 (02) ◽  
pp. 47-50
Author(s):  
Konita Turania ◽  
Diah Putri Islamy

This study aims to examine the effectiveness of parents income factor between genetic factor and parents behavior to stunting at Sukamaju Village, Sako District, Palembang City. Stunting problems describe very bad nutritional problems, influenced by the condition of the mother or expectant mothers, fetal period, and infant or under-five years, including illness suffered during childhood. Analysis of the percentage or coefficient of income levels, genetic factors and the behavior of the elderly in children under five with stunting cases. The results show 39 children under five who experienced stunting out of 100 respondents under five who were studied. The level of income, genetic factors and parental behavior relate to incidence of stunting among toddlers in Sukamaju village


Author(s):  
C. Riley Augé

Beginning with a brief explanation of British geographical origins and circumstances, this chapter proceeds to explain the motivations, expectations, and tribulations that contributed to the Puritan colonists’ overall experience as one of heightened anxiety and fearfulness. Looking at the difficulties they faced with the environmental challenges, high mortality rates, fear of darkness and forests, the cultural otherness of the indigenous populations, and their own social and religious conflicts, reveals the numerous crises the colonists had to contend with. To highlight the relationship of gender to the magical mindset and to the tribulations of the colonial experience in New England, Chapter 5 concludes with a discussion of the rigid and explicit delineation and enactment of Puritan gender expectations including speech restrictions.


Sign in / Sign up

Export Citation Format

Share Document