MONOSOMIC ANALYSIS OF GENES CONDITIONING STEM RUST RESISTANCE IN TWO COMMON WHEAT CULTIVARS

1974 ◽  
Vol 16 (2) ◽  
pp. 281-284
Author(s):  
A. K. Sanghi ◽  
E. P. Baker

The single genes in the cultivars Morocco and Yalta conditioning resistance to stem rust culture 103-H-2, a somatic hybrid between wheat stem rust (Puccinia graminis tritici) and rye stem rust (P. graminis secalis) which possesses unusual genes for avirulence on wheat, were each located by monosomic analysis on chromosome 3B. They were estimated to be approximately 9 map units apart.


1996 ◽  
Vol 76 (2) ◽  
pp. 317-319 ◽  
Author(s):  
D. R. Knott

Two genes for stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. & Henn.) resistance were transferred from the Ethiopian durum wheat (Triticum turgidum L) accession St. 464 to Thatcher and Prelude/8* Marquis common wheat. One gene was shown by monosomic analysis to be on chromosome 4B and proved to be Sr7a. Monosomic analysis failed to locate the second gene. It is only partially dominant and conditions resistance to a range of races. Key words: Rust resistance, stem rust, wheat, Puccinia graminis tritici, Triticum aestivum, Triticum turgidum



Plant Disease ◽  
2021 ◽  
Author(s):  
Kumarse Nazari ◽  
Ezgi Kurtulus ◽  
Handan Kavaz ◽  
Omer M. Ozturk ◽  
Yesim Egerci ◽  
...  

Severe wheat stem rust caused by Puccinia graminis Pers.:Pers. f. sp. tritici Erikss. (Pgt) can result in complete crop failure. In recent years, the increasing frequency and the early onset of stem rust in Central West Asia and North Africa (CWANA) has become a big concern. The Sr24 resistance gene, one of the most effective stem rust resistance genes effective against most P. graminis f. sp. tritici races worldwide, has been widely deployed. Until the recent establishment of virulence to Sr24 within the Ug99 lineage of the pathogen in Africa (Hei et al. 2020; Jin et al. 2008; Patpour et al. 2015), Iraq (Nazari et al., 2021), occasional detections of races virulent to Sr24 were reported in South Africa (Le Roux and Rijkenberg 1987), India (Bhardwaj et al. 1990), Germany (Olivera Firpo et al. 2017), Georgia (Olivera, et al. 2019), and Western Siberia (Skolotneva et al., 2020). During the rust surveys conducted in Sinops, Samsun, and Kastomonu in the Black Sea region in northern Turkey in 2018, 19 isolates were collected. Single pustule (SP) isolates were developed and used in race analysis in the Biosafety Rust Laboratory, Regional Cereal Rust Research Center (RCRRC), Izmir, Turkey. Sample recovery, experimental procedures for pre-inoculation, inoculation, incubation, and race typing were conducted as previously described (Nazari et al. 2021). Among the tested SP isolates, two isolates showed a high infection type (IT) of 33+ on the Sr24 tester line (Little Club/Agent) and a low infection type of 11+ for the source of Sr31 (Benno/6*LMPG-6). Eight SP isolates were further developed from the high IT 33+ pustules collected from the Sr24 tester line. After spore multiplications, they were used in inoculation of the 20 North American stem rust single-gene lines used to differentiate races of P. graminis f. sp. tritici, plus Trident (Sr38+), Siouxland (Sr24+Sr31), and Sisson (Sr31+Sr36). Five SP-derived isolates with IT 33+ on the Sr24 single-gene line collected from Samsun (Alacam – Etyemez; Location: N 41.61889 E 35.55722) and Sinop (Merkez-Sanlıoglu; Location: N 41.85556 E 35.04889) were identified as race TKKTP and the remaining three SP isolates as race TKTTP. In 2020, we detected two isolates of TKKTP among the stem rust samples from Tunisia submitted to RCRRC. These two isolates were collected from bread wheat cultivars Heydna and Tahmet at a trial site near Bou Salem in Western Tunisia (Location: N 36.5351 E 8.95486). Based on the negative results of the Stage 1 test using a suite of four real-time polymerase chain reaction assays diagnostic for the Ug99 race group developed by Szabo (2012), these two races should not belong to the Ug99 race group when compared to the reference Ug99 race TTKTT from Kenya. These races were virulent to Sr5, Sr21, Sr9e, Sr7b, Sr6, Sr8a, Sr9g, Sr9b, Sr30, Sr17, Sr9a, Sr9d, Sr10, SrTmp, Sr24, Sr38, and SrMcN. In addition to these genes, race TKTTP was virulent to Sr36. Both races were avirulent to Sr11 and Sr31. To our knowledge, this is the first report of P. graminis f. sp. tritici races with the Sr24 virulence in Turkey and Tunisia. The results reflect an increasing trend of virulence to Sr24 in the pathogen populations, and raise a great concern given the deployment of the Sr24 resistance gene in widely grown wheat cultivars worldwide.



Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Davoud Torkamaneh ◽  
Mehran Patpour

Following emergence of Ug99, the new virulent race of Puccinia graminis f. sp. tritici in Africa, a global effort for identification and utilization of new sources of Ug99-resistant germplasm has been undertaken. In this study, we conducted replicated experiments to evaluate the resistance of Iranian wheat germplasm to the TTKSK lineage of the Ug99 race of P. graminis f. sp. tritici. We also evaluated for presence of stem rust resistance genes (i.e., Sr2, Sr24, Sr26, Sr38, Sr39, Sr31, and Sr1RSAmigo) in wheat cultivars and breeding lines widely cultivated in Iran. Our phenotyping data revealed high levels of susceptibility to Ug99 in Iranian bread wheat germplasm. Our genotyping data revealed that Iranian cultivars do not carry Sr24, Sr26, or Sr1RSAmigo. Only a few salt-tolerant cultivars and breeding lines tested positively for Sr2, Sr31, Sr38, or Sr39 markers. In conclusion, the genetic basis for resistance to Ug99 in Iranian wheat cultivars was found to be vulnerable. Acquiring knowledge about existing resistance genes and haplotypes in wheat cultivars and breeding lines will help breeders, cereal pathologists, and policy makers to select and pyramid effective stem rust resistance genes.



PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4882 ◽  
Author(s):  
Xiaofeng Xu ◽  
Depeng Yuan ◽  
Dandan Li ◽  
Yue Gao ◽  
Ziyuan Wang ◽  
...  

Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2, Sr24, Sr25, Sr26, Sr31, and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2, Sr31, and Sr38, respectively. Cultivars “Kehan 3” and “Jimai 22” likely carried Sr25. None of the cultivars carried Sr24 or Sr26. These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.



PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4146 ◽  
Author(s):  
Xiao Feng Xu ◽  
Dan Dan Li ◽  
Yang Liu ◽  
Yue Gao ◽  
Zi Yuan Wang ◽  
...  

Wheat stem rust, caused byPuccinia granimisf. sp.tritici, severely affects wheat production, but it has been effectively controlled in China since the 1970s. However, the appearance and spread of wheat stem rust races Ug99 (TTKSK, virulence toSr31), TKTTF (virulence toSrTmp) and TTTTF (virulence to the cultivars carryingSr9eandSr13) have received attention. It is important to clarify the effectiveness of resistance genes in a timely manner, especially for the purpose of using new resistance genes in wheat cultivars for durable-resistance. However, little is known about the stem rust resistance genes present in widely used wheat cultivars from Gansu. This study aimed to determine the resistance level at the seedling stage of the main wheat cultivars in Gansu Province. A secondary objective was to assess the prevalence ofSr2,Sr24,Sr25,Sr26,Sr31, andSr38using molecular markers. The results of the present study indicated that 38 (50.7%) wheat varieties displayed resistance to all the tested races ofPuccinia graminisf. sp.tritici.The molecular marker analysis showed that 13 out of 75 major wheat cultivars likely carriedSr2; 25 wheat cultivars likely carriedSr31; and nine wheat cultivars likely carriedSr38. No cultivar was found to haveSr25andSr26, as expected. Surprisingly, no wheat cultivars carriedSr24. The wheat lines with known stem rust resistance genes could be used as donor parent for further breeding programs.



1977 ◽  
Vol 28 (1) ◽  
pp. 37 ◽  
Author(s):  
RA McIntosh ◽  
PL Dyck ◽  
GJ Green

The wheat cultivars Agent and Agatha each possess closely linked genes for resistance to Puccinia graminis tritici and P. recondita derived from Agropyron elongatum. The genes in Agent, located in chromosome 3D, were designated Sr24 and Lr24. The gene in Agatha for resistance to P. graminis tritici was designated Sr25 and is linked with Lr19 in chromosome 7D. Both Agent and Agatha possess additional genes for resistance to certain cultures of P. graminis tritici. Sr24 is considered a valuable source of resistance for wheat-breeding purposes, but Sr25 conferred an inadequate level of resistance to adult plants. A translocation from an A. elongatum chromosome to wheat chromosome 6A, present in Australian cultivars Eagle, Kite and Jabiru, carries a third gene, Sr26, for stem rust resistance.



1975 ◽  
Vol 17 (4) ◽  
pp. 667-674 ◽  
Author(s):  
P. L. Dyck ◽  
G. J. Green

The genetics of resistance to stem rust (Puccinia graminis tritici) was investigated in wheat (Triticum aestivum L.) cultivars Romany, Es.P 518/9, Bonny and Tama that are resistant to many races in both Canada and Kenya. Seedling resistance in the four cultivars to 12 Canadian races is controlled primarily by previously identified genes. The results indicate that the cultivars have the following genes: Romany — Sr5, Sr6, Sr7a, Sr9b and SrW; Es.P 518/9 — Sr5, Sr6, Sr7a, Sr8, Sr9b, SrW and possibly Sr17; Bonny — Sr6 and Sr11; and Tama — Sr6 and Sr8. Gene SrW confers moderate resistance and is also present in the cultivar Webster.



2016 ◽  
Vol 106 (11) ◽  
pp. 1352-1358 ◽  
Author(s):  
Jayaveeramuthu Nirmala ◽  
Shiaoman Chao ◽  
Pablo Olivera ◽  
Ebrahiem M. Babiker ◽  
Bekele Abeyo ◽  
...  

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, can cause severe yield losses on susceptible wheat varieties and cultivars. Although stem rust can be controlled by the use of genetic resistance, population dynamics of P. graminis f. sp. tritici can frequently lead to defeat of wheat stem rust resistance genes. P. graminis f. sp. tritici race TKTTF caused a severe epidemic in Ethiopia on Ug99-resistant ‘Digalu’ in 2013 and 2014. The gene Sr11 confers resistance to race TKTTF and is present in ‘Gabo 56’. We identified seven single-nucleotide polymorphism (SNP) markers linked to Sr11 from a cross between Gabo 56 and ‘Chinese Spring’ exploiting a 90K Infinium iSelect Custom beadchip. Five SNP markers were validated on a ‘Berkut’/‘Scalavatis’ population that segregated for Sr11, using KBioscience competitive allele-specific polymerase chain reaction (KASP) assays. Two of the SNP markers, KASP_6BL_IWB10724 and KASP_6BL_IWB72471, were predictive of Sr11 among wheat genetic stocks, cultivars, and breeding lines from North America, Ethiopia, and Pakistan. These markers can be utilized to select for Sr11 in wheat breeding and to detect the presence of Sr11 in uncharacterized germplasm.



2009 ◽  
Vol 89 (6) ◽  
pp. 1003-1008
Author(s):  
D R Knott

The common wheat (Triticum aestivum L.) cultivar Thatcher has resistance to many of the older races of stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. & Henn.). Several genetic studies have shown that its resistance is complex in inheritance. To attempt to clarify the inheritance, 28 lines, each believed to carry a single resistance gene from Thatcher, were developed. The lines were tested with 13 races of stem rust. They fell into 13 types with resistance to from 1 to 11 races. Of the five genes previously identified in Thatcher, only two, Sr9g, and Sr12, were present in the lines. Four lines carried named genes, Sr6, Sr7a, Sr8a and S9d, which had not previously been detected in Thatcher. Thatcher is resistant to 8 of the 13 races. At least one line was resistant to each of the 13 races, including the five to which Thatcher is susceptible. Eleven of the 13 types of lines were resistant to race MCCD to which Thatcher is resistant. Seven of the types were resistant to race TMRT(15B-1) to which Thatcher is susceptible. Clearly, the inheritance of resistance in Thatcher is very complex and involves a considerable number of genes. It carries a surprising number of genes that appear to be hidden by the presence of suppressor genes or transposons.Key words: Common wheat, Triticum aestivum, Puccinia graminis, suppressors, tansposons



Sign in / Sign up

Export Citation Format

Share Document