THE CYTOGENETIC STRUCTURE OF A 56-CHROMOSOME DERIVATIVE FROM A CROSS BETWEEN TRITICUM AESTIVUM AND AGROPYRON ELONGATUM (2n = 70)

1976 ◽  
Vol 18 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Jan Dvořák

Chromosome pairing was studied in a number of hybrids involving a 56-chromosome wheat-Agropyron derivative, PW 327. PW 327 originated from the cross, Triticum aestivum cv. Chinese Spring (Chinese Spring × A. elongatum, 2n = 70). In hybrids between PW 327 and T. aestivum a number of multivalent chromosome associations were formed at metaphase I. These multivalents result from interchanges which occurred among wheat chromosomes 1A, 1D, 2A, 2D, 4D and 6D of PW 327. One chromosome of the Agropyron chromosome set of PW 327 occasionally pairs with wheat chromosome 3B. The rest of the Agropyron chromosomes present in PW 327 do not pair with the chromosomes of T. aestivum. It is proposed that the set of Agropyron chromosomes present in PW 327 is not an intact genome of decaploid A. elongatum but rather a modified synthetic genome combining chromosomes and/or chromosome segments from different genomes of the Agropyron parent. The incorporation of duplication-deletions into synthetic genomes of natural polyploids is discussed and it is shown that the set of Agropyron chromosomes which is present in PW 327 carries at least one such duplication-deletion. Pairing between chromosomes of diploid and decaploid A. elongatum was studied in a 56-chromosome hybrid from a cross between an amphiploid, T. aestivum × A. elongatum (2n = 14), and PW 327. It appeared that at least four chromosomes of these two Agropyrons occasionally paired with each other in this hybrid in which the diploidizing system of wheat was active. The relationship between chromosomes of diploid and decaploid A. elongatum is discussed.


1981 ◽  
Vol 23 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Y. Yasumuro ◽  
R. Morris ◽  
D. C. Sharma ◽  
J. W. Schmidt

A study was initiated to transfer genes for stem- and leaf-rust resistance from a chromosome (designated 6Ag) of Agropyron elongatum (Host) Beauv to a homoeologous chromosome (6D) of wheat (Triticum aestivum L. aestivum group) by inducing pairing between 6Ag and 6D in the absence of the Ph gene on wheat chromosome 5B. Plants monosomic for SB, 6D and 6Ag were crossed with Chinese Spring nullisomic-5B tetrasomic-5D or with Chinese Spring monosomic or trisomic for SB with an induced mutation, phlb, of the Ph locus. Tests of 282 offspring in the seedling stage for reaction to the stem rust pathogen, Puccinia graminis Pers. f. sp. tritici Eriks. &E. Henn. race 56 or 15B-2, were used to identify 70 plants with 6Ag, which was transmitted through 25% of the female gametes. Meiotic observations on 51 of these plants indicated that six were monosomic for 6D and 6Ag, but lacked an entire 5B or had 5B with the phlb mutation. The frequency of metaphase I cells with pairing between 6D and 6Ag averaged 4.94% in three plants that were nullisomic for 5B and 2.48% in two plants that had a single dose of 5B with the phlb mutation.



Genome ◽  
1987 ◽  
Vol 29 (2) ◽  
pp. 365-366 ◽  
Author(s):  
G. C. Eizenga

Twelve lines of wheat (Triticum aestivum L.) were originally identified as having a segment of Agropyron elongatum chromatin carrying a gene for resistance to leaf rust (Puccinia recondita tritici) transferred to wheat chromosome 7D. By studying the chromosome pairing of one of these lines, transfer no. 12, with telosomes 7AL, 7AS, 7BL, 7BS, 7DL, 7DS, and 7AgS, it was determined that the Agropyron chromatin was carried on the long arm of wheat chromosome 7A rather than 7D. This determination was confirmed by acetocarmine–N-banding. Key words: Triticum aestivum, Agropyron elongatum, transfer lines, Puccinia recondita tritici, telosomic analysis.



1976 ◽  
Vol 18 (2) ◽  
pp. 371-377 ◽  
Author(s):  
Jan Dvořák

Triticum urartu (2n = 14) was crossed with T. aestivum lines ditelosomic for chromosomes of the A and B genomes. Except for telosome 4Aα, the rest of the telosomes of the A genome paired in these hybrids while telosomes of the B genome did not pair. This indicates that T. urartu cannot be the donor of the B genome of 4x and 6x wheat, but carries an A genome. Compared to the rest of the hybrids, pairing of T. urartu chromosomes was significantly reduced in hybrids deficient for chromosome arms 5AS or 5BS. It is suggested that this reduction in chromosome pairing resulted from the absence of genes which promote homoelogous pairing and which are normally present on chromosome arms 5AS and 5BS in Chinese Spring.





1981 ◽  
Vol 23 (2) ◽  
pp. 287-303 ◽  
Author(s):  
J. Dvořák

Triticum aestivum L. em Thell ditelosomics 7AL and 7DS and T. aestivum-Elytrigia elongata (Host) Holub (2n = 2x = 14) ditelosomic additions were crossed with "E. elongata 4x" (2n = 4x = 28), E. caespitosa (C. Koch) Nevski (2n = 4x = 28), and E. intermedia (Host) Nevski (2n = 6x = 42). The effect of each Elytrigia genotype on homoeologous (heterogenetic) chromosome pairing was assessed by comparing the pairing frequencies of T. aestivum cv. Chinese Spring telosomes 7AL and 7DS in the hybrids with the pairing frequency of telosome 7AL in haploid Chinese Spring. The genotype of "E. elongata 4x" had no effect on heterogenetic pairing in the hybrids. Although some genotypes of E. caespitosa and E. intermedia promoted heterogenetic pairing in the hybrids, others had no effect. Telosome VS of E. elongata interacted in a complementary fashion with the genotype of "E. elongata 4x," but not with the genotypes of Chinese Spring and E. caespitosa, and it promoted heterogenetic pairing. In hybrids in which the wheat diploidizing genes were active at the normal level, the E. elongata telosomes paired with chromosomes of "E. elongata 4x" in 5.8% to 24.6% of the cells, with chromosomes of E. caespitosa in 0.0% to 1.0% of the cells, and with chromosomes of E. intermedia in 0.0% to 2.8% of the cells. A model of chromosome differentiation is discussed and special attention is devoted to the origin of diploid-like pairing in polyploid species.



Genome ◽  
1987 ◽  
Vol 29 (4) ◽  
pp. 627-629 ◽  
Author(s):  
George Fedak ◽  
K. C. Armstrong ◽  
R. J. Handyside

Plants of Triticum aestivum cv. Chinese Spring were regenerated from 30 calli obtained from suspension cultures. All four plants showed abnormal meiotic chromosome behaviour relative to the control. The average meiotic configuration over all plants was 1.55 I + 18.16 II + 0.30 III + 0.82 IV. In addition, an isochromosome was frequently observed in cells of all plants, which was indicative of centromeric breaks. Key words: culture (suspension), wheat, chromosome instability.



1977 ◽  
Vol 19 (3) ◽  
pp. 549-556 ◽  
Author(s):  
J. Dvořák

The number of chiasmata per cell at metaphase I was scored in eight haploid plants of Triticum aestivum L. emend. Thell. cv. 'Chinese Spring' and 100 hybrid plants of Chinese Spring × Secale cereale L. Mean chiasma frequency per cell ranged from 0.00 to 3.59 in the hybrids and from 0.17 to 0.35 in the haploids. Since the same wheat genotype was present in both the haploids and hybrids, it is concluded that some of the rye genotypes promoted homoeologous chromosome pairing. The absence of distinct segregation classes among the hybrids suggests that these genes constitute a polygenic system.



1982 ◽  
Vol 24 (1) ◽  
pp. 57-82 ◽  
Author(s):  
Patrick E. McGuire ◽  
Jan Dvořák

Polyploid species of Triticum sensu lato were crossed with Triticum aestivum L. em. Thell. cv. Chinese Spring monotelodisomics or ditelosomics that were monosomic for chromosome 5B. Progeny from these crosses were either euploid, nullisomic for 5B, monotelosomic for a given Chinese Spring chromosome, or nullisomic for 5B and monotelosomic simultaneously. The Chinese Spring telosome in the hybrids permitted the evaluation of autosyndesis of chromosomes of the tested species. In addition, several Chinese Spring eu- and aneuhaploids were produced. Genotypes of T. cylindricum Ces., T. juvenale Thell., T. triunciale (L.) Raspail, T. ovatum (L.) Raspail, T. columnare (Zhuk.) Morris et Sears, T. triaristatum (Willd.) Godr. et Gren., and T. rectum (Zhuk.) comb. nov. were all shown to have suppressive effects on heterogenetic pairing in hybrids lacking 5B or 3AS, whereas T. kotschyi (Boiss.) Bowden had no effect. It was concluded that diploid-like meiosis in these species is due to genetic regulation. A number of these genotypes promoted heterogenetic pairing in the presence of 5B. A model is presented to explain this dichotomous behavior of the tested genotypes. Monotelosomic-3AL haploids had a greater amount of pairing than did euhaploid Chinese Spring, which substantiated the presence of a pairing suppressor(s) on the 3AS arm. Evidence is presented that shows that T. juvenale does not have a genome homologous with the D genome of T. aestivum.



2019 ◽  
Author(s):  
Tracie Draeger ◽  
Azahara Martin ◽  
Abdul Kader Alabdullah ◽  
Ali Pendle ◽  
María-Dolores Rey ◽  
...  

AbstractWe have assessed the effects of high and low temperatures on meiotic chromosome synapsis and crossover formation in the hexaploid wheat (Triticum aestivum L.) variety ‘Chinese Spring’. At low temperatures, asynapsis and chromosome univalence have been observed before in Chinese Spring lines lacking the long arm of chromosome 5D (5DL), which led to the proposal that 5DL carries a gene (Ltp1) that stabilises wheat chromosome pairing at low temperatures. In the current study, Chinese Spring wild type and 5DL interstitial deletion mutant plants were exposed to low (13°C) or high (30°C) temperatures in controlled environment rooms during a period from premeiotic interphase to early meiosis I. A 5DL deletion mutant was identified whose meiotic chromosomes exhibit extremely high levels of asynapsis and chromosome univalence at metaphase I after seven days at 13°C. This suggests that the mutant, which we name ttmei1 (temperature tolerance in meiosis 1) has a deletion of a gene that, like Ltp1, normally stabilises chromosome pairing at low temperatures. Immunolocalisation of the meiotic proteins ASY1 and ZYP1 on ttmei1 mutants showed that low temperature results in a failure to complete synapsis at pachytene. After 24 hours at 30°C, ttmei1 mutants exhibited a reduced number of crossovers and increased univalence, but to a lesser extent than at 13°C. KASP genotyping revealed that ttmei1 has a 4 Mb deletion in 5DL. Of 41 genes within this deletion region, the strongest candidate for the stabilisation of chromosome pairing at low (and possibly high) temperatures is the meiotic recombination gene Dmc1.Key messageThe meiotic recombination gene Dmc1 on wheat chromosome 5D has been identified as a candidate for the maintenance of normal chromosome synapsis and crossover at low and possibly high temperatures.



1970 ◽  
Vol 12 (2) ◽  
pp. 278-282 ◽  
Author(s):  
C. J. Driscoll ◽  
C. J. Quinn

Genetic differences which affect the extent of homoeologous chromosome pairing in intergeneric hybrids have been demonstrated between varieties of Triticum aestivum. Each of seven varieties of Triticum was crossed with the same strain of Aegilops variabilis. Significant differences in chiasma frequencies between varieties were found. Varieties Eureka, Gamut and Chinese Spring constitute one group with a relatively low chiasma frequency and varieties A. R. Falcon, Federation and Poso constitute a distinct second group with a relatively high chiasma frequency. The variety Bearded Yalta is intermediate to the two groups. Thus, this genetic variation appears to be common among varieties of Triticum. Presumably this variation does not become subject to natural selection as long as chromosome pairing in the parental varieties remains strictly homologous.



Sign in / Sign up

Export Citation Format

Share Document