scholarly journals Dmc1 is a candidate for temperature tolerance during wheat meiosis

2019 ◽  
Author(s):  
Tracie Draeger ◽  
Azahara Martin ◽  
Abdul Kader Alabdullah ◽  
Ali Pendle ◽  
María-Dolores Rey ◽  
...  

AbstractWe have assessed the effects of high and low temperatures on meiotic chromosome synapsis and crossover formation in the hexaploid wheat (Triticum aestivum L.) variety ‘Chinese Spring’. At low temperatures, asynapsis and chromosome univalence have been observed before in Chinese Spring lines lacking the long arm of chromosome 5D (5DL), which led to the proposal that 5DL carries a gene (Ltp1) that stabilises wheat chromosome pairing at low temperatures. In the current study, Chinese Spring wild type and 5DL interstitial deletion mutant plants were exposed to low (13°C) or high (30°C) temperatures in controlled environment rooms during a period from premeiotic interphase to early meiosis I. A 5DL deletion mutant was identified whose meiotic chromosomes exhibit extremely high levels of asynapsis and chromosome univalence at metaphase I after seven days at 13°C. This suggests that the mutant, which we name ttmei1 (temperature tolerance in meiosis 1) has a deletion of a gene that, like Ltp1, normally stabilises chromosome pairing at low temperatures. Immunolocalisation of the meiotic proteins ASY1 and ZYP1 on ttmei1 mutants showed that low temperature results in a failure to complete synapsis at pachytene. After 24 hours at 30°C, ttmei1 mutants exhibited a reduced number of crossovers and increased univalence, but to a lesser extent than at 13°C. KASP genotyping revealed that ttmei1 has a 4 Mb deletion in 5DL. Of 41 genes within this deletion region, the strongest candidate for the stabilisation of chromosome pairing at low (and possibly high) temperatures is the meiotic recombination gene Dmc1.Key messageThe meiotic recombination gene Dmc1 on wheat chromosome 5D has been identified as a candidate for the maintenance of normal chromosome synapsis and crossover at low and possibly high temperatures.


2019 ◽  
Vol 133 (3) ◽  
pp. 809-828 ◽  
Author(s):  
Tracie Draeger ◽  
Azahara C. Martin ◽  
Abdul Kader Alabdullah ◽  
Ali Pendle ◽  
María-Dolores Rey ◽  
...  

Abstract Key message The meiotic recombination gene Dmc1 on wheat chromosome 5D has been identified as a candidate for the maintenance of normal chromosome synapsis and crossover at low and possibly high temperatures. Abstract We initially assessed the effects of low temperature on meiotic chromosome synapsis and crossover formation in the hexaploid wheat (Triticum aestivum L.) variety ‘Chinese Spring’. At low temperatures, asynapsis and chromosome univalence have been observed before in Chinese Spring lines lacking the long arm of chromosome 5D (5DL), which led to the proposal that 5DL carries a gene (Ltp1) that stabilises wheat chromosome pairing at low temperatures. In the current study, Chinese Spring wild type and 5DL interstitial deletion mutant plants were exposed to low temperature in a controlled environment room during a period from premeiotic interphase to early meiosis I. A 5DL deletion mutant was identified whose meiotic chromosomes exhibit extremely high levels of asynapsis and chromosome univalence at metaphase I after 7 days at 13 °C, suggesting that Ltp1 is deleted in this mutant. Immunolocalisation of the meiotic proteins ASY1 and ZYP1 on ltp1 mutants showed that low temperature results in a failure to complete synapsis at pachytene. KASP genotyping revealed that the ltp1 mutant has a 4-Mb deletion in 5DL. Of 41 genes within this deletion region, the strongest candidate for the stabilisation of chromosome pairing at low temperatures is the meiotic recombination gene Dmc1. The ltp1 mutants were subsequently treated at 30 °C for 24 h during meiosis and exhibited a reduced number of crossovers and increased univalence, though to a lesser extent than at 13 °C. We therefore renamed our ltp1 mutant ‘ttmei1’ (temperature-tolerant meiosis 1) to reflect this additional loss of high temperature tolerance.



Genome ◽  
1987 ◽  
Vol 29 (4) ◽  
pp. 627-629 ◽  
Author(s):  
George Fedak ◽  
K. C. Armstrong ◽  
R. J. Handyside

Plants of Triticum aestivum cv. Chinese Spring were regenerated from 30 calli obtained from suspension cultures. All four plants showed abnormal meiotic chromosome behaviour relative to the control. The average meiotic configuration over all plants was 1.55 I + 18.16 II + 0.30 III + 0.82 IV. In addition, an isochromosome was frequently observed in cells of all plants, which was indicative of centromeric breaks. Key words: culture (suspension), wheat, chromosome instability.



Nature ◽  
1967 ◽  
Vol 216 (5119) ◽  
pp. 1028-1029 ◽  
Author(s):  
A. M. HAYTER ◽  
RALPH RILEY


1976 ◽  
Vol 18 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Jan Dvořák

Chromosome pairing was studied in a number of hybrids involving a 56-chromosome wheat-Agropyron derivative, PW 327. PW 327 originated from the cross, Triticum aestivum cv. Chinese Spring (Chinese Spring × A. elongatum, 2n = 70). In hybrids between PW 327 and T. aestivum a number of multivalent chromosome associations were formed at metaphase I. These multivalents result from interchanges which occurred among wheat chromosomes 1A, 1D, 2A, 2D, 4D and 6D of PW 327. One chromosome of the Agropyron chromosome set of PW 327 occasionally pairs with wheat chromosome 3B. The rest of the Agropyron chromosomes present in PW 327 do not pair with the chromosomes of T. aestivum. It is proposed that the set of Agropyron chromosomes present in PW 327 is not an intact genome of decaploid A. elongatum but rather a modified synthetic genome combining chromosomes and/or chromosome segments from different genomes of the Agropyron parent. The incorporation of duplication-deletions into synthetic genomes of natural polyploids is discussed and it is shown that the set of Agropyron chromosomes which is present in PW 327 carries at least one such duplication-deletion. Pairing between chromosomes of diploid and decaploid A. elongatum was studied in a 56-chromosome hybrid from a cross between an amphiploid, T. aestivum × A. elongatum (2n = 14), and PW 327. It appeared that at least four chromosomes of these two Agropyrons occasionally paired with each other in this hybrid in which the diploidizing system of wheat was active. The relationship between chromosomes of diploid and decaploid A. elongatum is discussed.



2019 ◽  
Author(s):  
Diana Lustyk ◽  
Slavomír Kinský ◽  
Kristian Karsten Ullrich ◽  
Michelle Yancoskie ◽  
Lenka Kašíková ◽  
...  

ABSTRACTF1 hybrids between mouse inbred strains PWD and C57BL/6 represent the most thoroughly genetically defined model of hybrid sterility in vertebrates. Hybrid male sterility can be fully reconstituted from three components of this model, namely the Prdm9 hybrid sterility gene, intersubspecific homeology of Mus musculus musculus and Mus musculus domesticus autosomes, and the X-linked Hstx2 locus. Hstx2 modulates the extent of Prdm9-dependent meiotic arrest and harbors two additional genetic factors responsible for intersubspecific introgression-induced oligospermia (Hstx1) and reduced global meiotic recombination rate (Meir1). To facilitate positional cloning and to overcome the recombination suppression within the 4.3 Mb genomicDob interval encompassing the Hstx2 locus we designed Hstx2-CRISPR and SPO11/Cas9 transgenes aimed to induce DNA double-strand breaks specifically within the Hstx2 locus. The resulting recombinant reduced the Hstx2 locus to 2.70 Mb (Chr X:66.51-69.21 Mb). The newly defined Hstx2 still operates as the major X-linked factor of the F1 hybrid sterility, controls meiotic chromosome synapsis, and modifies meiotic recombination rate. Despite extensive further crosses, the 2.70 Mb Hstx2 interval behaved as a recombination cold spot with reduced PRDM9-mediated H3K4 hotspots and absence of DMC1-defined DNA DSB hotspots. To search for structural anomalies as a possible cause of recombination suppression we used optical mapping of the Hstx2 interval and observed high incidence of subspecies-specific structural variants along the X chromosome, with a striking copy number polymorphism of the microRNA Mir465 cluster. Finally, we analyzed the role of one of the Hstx2 candidate genes, the Fmr1 neighbor (Fmr1nb) gene in male fertility.Article summaryEarly meiotic arrest of mouse intersubspecific hybrids depends on the interaction between the Prdm9 gene and Hybrid sterility X2 (Hstx2) locus on chromosome X. Lustyk et al. conducted high-resolution genetic and physical mapping of the Hstx2 locus, reduced it to 2.7 Mb interval within a constitutive recombination cold spot and found that the newly defined Hstx2 still operates as the X-linked hybrid sterility factor, controls meiotic chromosome synapsis, and modifies recombination rate. Optical mapping of the Hstx2 genomic region excluded inversion as a cause of recombination suppression and revealed a striking copy number polymorphism of the microRNA Mir465 cluster.



Genetics ◽  
1995 ◽  
Vol 141 (1) ◽  
pp. 75-86
Author(s):  
D K Nag ◽  
H Scherthan ◽  
B Rockmill ◽  
J Bhargava ◽  
G S Roeder

Abstract Previous studies of Saccharomyces cerevisiae have identified several meiosis-specific genes whose products are required for wild-type levels of meiotic recombination and for normal synaptonemal complex (SC) formation. Several of these mutants were examined in a physical assay designed to detect heteroduplex DNA (hDNA) intermediates in meiotic recombination. hDNA was not detected in the rec102, mei4 and hop1 mutants; it was observed at reduced levels in red1, mek1 and mer1 strains and at greater than the wild-type level in zip1. These results indicate that the REC102, MEI4, HOP1, RED1, MEK1 and MER1 gene products act before hDNA formation in the meiotic recombination pathway, whereas ZIP1 acts later. The same mutants assayed for hDNA formation were monitored for meiotic chromosome pairing by in situ hybridization of chromosome-specific DNA probes to spread meiotic nuclei. Homolog pairing occurs at wild-type levels in the zip1 and mek1 mutants, but is substantially reduced in mei4, rec102, hop1, red1 and mer1 strains. Even mutants that fail to recombine or to make any SC or SC precursors undergo a significant amount of meiotic chromosome pairing. The in situ hybridization procedure revealed defects in meiotic chromatin condensation in mer1, red1 and hop1 strains.



Genetics ◽  
1995 ◽  
Vol 141 (1) ◽  
pp. 61-73
Author(s):  
M Molnar ◽  
J Bähler ◽  
M Sipiczki ◽  
J Kohli

Abstract The fission yeast Schizosaccharomyces pombe does not form tripartite synaptonemal complexes during meiotic prophase, but axial core-like structures (linear elements). To probe the relationship between meiotic recombination and the structure, pairing, and segregation of meiotic chromosomes, we genetically and cytologically characterized the rec8-110 mutant, which is partially deficient in meiotic recombination. The pattern of spore viability indicates that chromosome segregation is affected in the mutant. A detailed segregational analysis in the rec8-110 mutant revealed more spores disomic for chromosome III than in a wild-type strain. Aberrant segregations are caused by precocious segregation of sister chromatids at meiosis I, rather than by nondisjunction as a consequence of lack of crossovers. In situ hybridization further showed that the sister chromatids are separated prematurely during meiotic prophase. Moreover, the mutant forms aberrant linear elements and shows a shortened meiotic prophase. Meiotic chromosome pairing in interstitial and centromeric regions is strongly impaired in rec8-110, whereas the chromosome ends are less deficient in pairing. We propose that the rec8 gene encodes a protein required for linear element formation and that the different phenotypes of rec8-110 reflect direct and indirect consequences of the absence of regular linear elements.



2019 ◽  
Author(s):  
Jonna Heldrich ◽  
Xiaoji Sun ◽  
Luis A. Vale-Silva ◽  
Tovah E. Markowitz ◽  
Andreas Hochwagen

AbstractDuring meiotic prophase, concurrent transcription, recombination, and chromosome synapsis, place substantial topological strain on chromosomal DNA, but the role of topoisomerases in this context remains poorly defined. Here, we analyzed the roles topoisomerases I and II (Top1 and Top2) during meiotic prophase in Saccharomyces cerevisiae. We show that both topoisomerases accumulate primarily in promoter-containing intergenic regions of actively transcribing genes. Enrichment partially overlaps meiotic double-strand break (DSB) hotspots, but disruption of either topoisomerase has different effects during meiotic recombination. TOP1 disruption delays DSB induction and shortens the window of DSB accumulation by an unknown mechanism. By contrast, temperature-sensitive top2-1 mutants accumulate DSBs on synapsed chromosomes and exhibit a marked delay in meiotic chromosome remodeling. This defect results from a delay in recruiting the meiotic chromosome remodeler Pch2/TRIP13 but, unexpectedly, is not due to a loss of Top2 catalytic activity. Instead, mutant Top2-1 protein has reduced contact with chromatin but remains associated with meiotic chromosomes, and we provide evidence that this altered binding is responsible for the delay in chromosome remodeling. Our results imply independent roles for topoisomerases I and II in modulating meiotic recombination.



Genetics ◽  
1992 ◽  
Vol 130 (1) ◽  
pp. 59-69
Author(s):  
J Bhargava ◽  
J Engebrecht ◽  
G S Roeder

Abstract A mutation at the REC102 locus was identified in a screen for yeast mutants that produce inviable spores. rec102 spore lethality is rescued by a spo13 mutation, which causes cells to bypass the meiosis I division. The rec102 mutation completely eliminates meiotically induced gene conversion and crossing over but has no effect on mitotic recombination frequencies. Cytological studies indicate that the rec102 mutant makes axial elements (precursors to the synaptonemal complex), but homologous chromosomes fail to synapse. In addition, meiotic chromosome segregation is significantly delayed in rec102 strains. Studies of double and triple mutants indicate that the REC102 protein acts before the RAD52 gene product in the meiotic recombination pathway. The REC102 gene was cloned based on complementation of the mutant defect and the gene was mapped to chromosome XII between CDC25 and STE11.



Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Craig N. Giroux ◽  
Michael E. Dresser ◽  
Howard F. Tiano

Both meiosis-specific and general recombination functions, recruited from the mitotic cell cycle, are required for elevated levels of recombination and for chromosome synapsis (assembly of the synaptonemal complex) during yeast meiosis. The meiosis-specific SPO11 gene (previously shown to be required for meiotic recombination) has been isolated and shown to be essential for synaptonemal complex formation but not for DNA metabolism during the vegetative cell cycle. In contrast, the RAD52 gene is required for mitotic and meiotic recombination but not for synaptonemal complex assembly. These data suggest that the synaptonemal complex may be necessary but is clearly not sufficient for meiotic recombination. Cytological analysis of spread meiotic nuclei demonstrates that chromosome behavior in yeast is comparable with that observed in larger eukaryotes. These spread preparations support the immunocytological localization of specific proteins in meiotic nuclei. This combination of genetic, molecular cloning, and cytological approaches in a single experimental system provides a means of addressing the role of specific gene products and nuclear structures in meiotic chromosome behavior.Key words: synaptonemal complex, chromosome behavior, meiosis.



Sign in / Sign up

Export Citation Format

Share Document