Application of the random amplified polymorphic DNA technique for the detection of polymorphism among wild and cultivated tetraploid wheats

Genome ◽  
1993 ◽  
Vol 36 (3) ◽  
pp. 602-609 ◽  
Author(s):  
Chandrashekhar P. Joshi ◽  
Henry T. Nguyen

Development of a high-density genetic linkage map of cultivated wheats using conventional molecular markers has lagged behind the other major food crops such as rice and tomato because of the large genome size and limited levels of genetic polymorphisms. Recently, random amplified polymorphic DNAs (RAPDs) have been suggested to provide an alternative to visualize more polymorphism. For the construction of a genetic linkage map in tetraploid wheats, one can use a strategy of intersubspecific crosses between the most dissimilar wild and cultivated tetraploid wheats that are easy to hybridize and result in fertile progeny. An assessment of the level of RAPDs among different accessions and varieties of wild and cultivated tetraploid wheats is required to fulfill this objective. We present here the data obtained using RAPD analysis of 40 primers in 20 accessions of wild tetraploid emmer wheats (Triticum turgidum L. ssp. dicoccoides) and 10 genotypes of cultivated tetraploid durum wheats (Triticum turgidum L. ssp. durum) selected from geographically diverse locations. We have observed a higher level of polymorphism among different accessions of wild emmer wheat from Israel, Turkey, and Jordan than the group of cultivated American, Turkish, and Syrian durum wheats. These data have been used to generate a dendrogram suggesting the genetic relationships among these genotypes, and the most dissimilar genotypes are identified for future mapping and gene tagging work.Key words: durum wheat, emmer wheat, genetic similarity, molecular markers, RAPD analysis.

2000 ◽  
Vol 66 (12) ◽  
pp. 5290-5300 ◽  
Author(s):  
Luis M. Larraya ◽  
G�mer P�rez ◽  
Enrique Ritter ◽  
Antonio G. Pisabarro ◽  
Lucı́a Ramı́rez

ABSTRACT We have constructed a genetic linkage map of the edible basidiomycete Pleurotus ostreatus (var. Florida). The map is based on the segregation of 178 random amplified polymorphic DNA and 23 restriction fragment length polymorphism markers; four hydrophobin, two laccase, and two manganese peroxidase genes; both mating type loci; one isozyme locus (est1); the rRNA gene sequence; and a repetitive DNA sequence in a population of 80 sibling monokaryons. The map identifies 11 linkage groups corresponding to the chromosomes ofP. ostreatus, and it has a total length of 1,000.7 centimorgans (cM) with an average of 35.1 kbp/cM. The map shows a high correlation (0.76) between physical and genetic chromosome sizes. The number of crossovers observed per chromosome per individual cell is 0.89. This map covers nearly the whole genome of P. ostreatus.


1999 ◽  
Vol 133 (4) ◽  
pp. 389-395 ◽  
Author(s):  
M. A. CHOWDHURY ◽  
A. E. SLINKARD

We constructed a genetic linkage map of grasspea (Lathyrus sativus L.; 2n = 14) from 100 F2 individuals derived from a cross between PI 426891.1.3 and PI 283564c.3.2. A total of 71 RAPD, three isozyme and one morphological markers segregated in the F2 progeny. A small fraction of markers (12%) deviated significantly from the expected Mendelian ratio (1[ratio ]2[ratio ]1 or 3[ratio ]1). Out of 75 markers, 69 (one morphological, three isozyme and 65 RAPD markers) were assigned to 14 linkage groups comprising 898 cM. The average distance between two adjacent markers was 17·2 cM. The present linkage map will serve as a reference point for further linkage studies in grasspea.


1998 ◽  
Vol 97 (5-6) ◽  
pp. 888-895 ◽  
Author(s):  
E. Dirlewanger ◽  
V. Pronier ◽  
C. Parvery ◽  
C. Rothan ◽  
A. Guye ◽  
...  

Genome ◽  
2008 ◽  
Vol 51 (8) ◽  
pp. 628-637 ◽  
Author(s):  
S. K. Gupta ◽  
J. Souframanien ◽  
T. Gopalakrishna

A genetic linkage map of black gram, Vigna mungo (L.) Hepper, was constructed with 428 molecular markers using an F9 recombinant inbred population of 104 individuals. The population was derived from an inter-subspecific cross between a black gram cultivar, TU94-2, and a wild genotype, V. mungo var. silvestris. The linkage analysis at a LOD score of 5.0 distributed all 428 markers (254 AFLP, 47 SSR, 86 RAPD, and 41 ISSR) into 11 linkage groups. The map spanned a total distance of 865.1 cM with an average marker density of 2 cM. The largest linkage group spanned 115 cM and the smallest linkage group was of 44.9 cM. The number of markers per linkage group ranged from 11 to 86 and the average distance between markers varied from 1.1 to 5.6 cM. Comparison of the map with other published azuki bean and black gram maps showed high colinearity of markers, with some inversions. The current map is the most saturated map for black gram to date and will provide a useful tool for identification of QTLs and for marker-assisted selection of agronomically important characters in black gram.


2007 ◽  
Vol 3 (4) ◽  
pp. 341-350 ◽  
Author(s):  
A. V. Blenda ◽  
I. Verde ◽  
L. L. Georgi ◽  
G. L. Reighard ◽  
S. D. Forrest ◽  
...  

Genome ◽  
2012 ◽  
Vol 55 (4) ◽  
pp. 327-335 ◽  
Author(s):  
Xiaoxia Yu ◽  
Xiaolei Li ◽  
Yanhong Ma ◽  
Zhuo Yu ◽  
Zaozhe Li

Using a population of 105 interspecific F2 hybrids derived from a cross between Agropyron mongolicum Keng and Agropyron cristatum (L.) Gaertn. ‘Fairway’ as a mapping population, a genetic linkage map of crested wheatgrass was constructed based on AFLP and RAPD molecular markers. A total of 175 markers, including 152 AFLP and 23 RAPD markers, were ordered in seven linkage groups. The map distance was 416 cM, with a mean distance of 2.47 cM between markers. The number of markers ranged from 13 to 46 in each linkage group and the length of groups ranged from 18 to 104 cM. The research found that 30 out of 175 molecular markers showed segregation distortion, accounting for 17% of all markers. This is the first genetic linkage map of crested wheatgrass. This map will facilitate gene localization, cloning, and molecular marker-assisted selection in the future.


2002 ◽  
Vol 127 (4) ◽  
pp. 685-688 ◽  
Author(s):  
Gino E. Beltrán ◽  
Geunwha Jung ◽  
James Nienhuis ◽  
Mark J. Bassett

The development of a complete linkage map, including both classical (visible) and molecular markers, is important to understand the genetic relationships among different traits in common bean (Phaseolus vulgaris L.). The objective of this study was to integrate classical marker genes into previously constructed molecular linkage maps in common bean. Bulked segregant analysis was used to identify 10 random amplified polymorphic DNA (RAPD) markers linked to genes for five classical marker traits: dark green savoy leaf (dgs), blue flower (blu), silvery [Latin: argentum] green pod (arg), yellow wax pod (y) and flat pod (a spontaneous mutation from round to flat pod in `Hialeah' snap bean). The genes for dark green savoy leaf (dgs) and blue flower (blu) were located in a previously constructed molecular linkage map. These results indicate that classical marker genes and molecular markers can be integrated to form a more complete and informative genetic linkage map. Most of the RAPD markers were not polymorphic in the two mapping populations used, and molecular markers from those mapping populations were not polymorphic in the F2 populations used to develop the RAPD markers. Alternative genetic hypotheses for the pod shape mutation in `Hialeah' are discussed, and the experimental difficulties of pod shape classification are described.


Genome ◽  
2008 ◽  
Vol 51 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Keita Suwabe ◽  
Colin Morgan ◽  
Ian Bancroft

An integrated linkage map between B. napus and B. rapa was constructed based on a total of 44 common markers comprising 41 SSR (33 BRMS, 6 Saskatoon, and 2 BBSRC) and 3 SNP/indel markers. Between 3 and 7 common markers were mapped onto each of the linkage groups A1 to A10. The position and order of most common markers revealed a high level of colinearity between species, although two small regions on A4, A5, and A10 revealed apparent local inversions between them. These results indicate that the A genome of Brassica has retained a high degree of colinearity between species, despite each species having evolved independently after the integration of the A and C genomes in the amphidiploid state. Our results provide a genetic integration of the Brassica A genome between B. napus and B. rapa. As the analysis employed sequence-based molecular markers, the information will accelerate the exploitation of the B. rapa genome sequence for the improvement of oilseed rape.


Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1497-1505
Author(s):  
Gert H J Kema ◽  
Stephen B Goodwin ◽  
Sonia Hamza ◽  
Els C P Verstappen ◽  
Jessica R Cavaletto ◽  
...  

Abstract An F1 mapping population of the septoria tritici blotch pathogen of wheat, Mycosphaerella graminicola, was generated by crossing the two Dutch field isolates IPO323 and IPO94269. AFLP and RAPD marker data sets were combined to produce a high-density genetic linkage map. The final map contained 223 AFLP and 57 RAPD markers, plus the biological traits mating type and avirulence, in 23 linkage groups spanning 1216 cM. Many AFLPs and some RAPD markers were clustered. When markers were reduced to 1 per cluster, 229 unique positions were mapped, with an average distance of 5.3 cM between markers. Because M. graminicola probably has 17 or 18 chromosomes, at least 5 of the 23 linkage groups probably will need to be combined with others once additional markers are added to the map. This was confirmed by pulsed-field gel analysis; probes derived from 2 of the smallest linkage groups hybridized to two of the largest chromosome-sized bands, revealing a discrepancy between physical and genetic distance. The utility of the map was demonstrated by identifying molecular markers tightly linked to two genes of biological interest, mating type and avirulence. Bulked segregant analysis was used to identify additional molecular markers closely linked to these traits. This is the first genetic linkage map for any species in the genus Mycosphaerella or the family Mycosphaerellaceae.


Sign in / Sign up

Export Citation Format

Share Document