qtls mapping
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 7 (12) ◽  
pp. 1076
Author(s):  
Wenbing Gong ◽  
Nan Shen ◽  
Lin Zhang ◽  
Yinbing Bian ◽  
Yang Xiao

Meiotic crossover plays a critical role in generating genetic variations and is a central component of breeding. However, our understanding of crossover in mushroom-forming fungi is limited. Here, in Lentinula edodes, we characterized the chromosome-wide intragenic crossovers, by utilizing the single-nucleotide polymorphisms (SNPs) datasets of an F1 haploid progeny. A total of 884 intragenic crossovers were identified in 110 single-spore isolates, the majority of which were closer to transcript start sites. About 71.5% of the intragenic crossovers were clustered into 65 crossover hotspots. A 10 bp motif (GCTCTCGAAA) was significantly enriched in the hotspot regions. Crossover frequencies around mating-type A (MAT-A) loci were enhanced and formed a hotspot in L. edodes. Genome-wide quantitative trait loci (QTLs) mapping identified sixteen crossover-QTLs, contributing 8.5–29.1% of variations. Most of the detected crossover-QTLs were co-located with crossover hotspots. Both cis- and trans-QTLs contributed to the nonuniformity of crossover along chromosomes. On chr2, we identified a QTL hotspot that regulated local, global crossover variation and crossover hotspot in L. edodes. These findings and observations provide a comprehensive view of the crossover landscape in L. edodes, and advance our understandings of conservation and diversity of meiotic recombination in mushroom-forming fungi.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yun Zhu ◽  
Liyun Han ◽  
Peng Li ◽  
Xiaolong Kang ◽  
Xingang Dan ◽  
...  

Abstractulked Segregant Analysis (BSA) is a rapid strategy for identifying genetic markers in specific regions of the phenotypical population and it has been widely used for QTLs mapping in smaller mixed F2 and F3 populations. We applied a modified BSA method to assessed genome-wide homozygous and heterozygous linkage patterns in the Chinese Wagyu Beef Cattle F2/F3 mixed population. Two overlapped regions from F2 and F3 populations on autosomes were found with high-density heterozygote alleles between high and low intramuscular fat groups. Regions from 24.8 M ~ 29.6 M of chromosome 23 were identified as most significantly correlated to the intramuscular fat in our samples. We also identified other 4 potential loci on chromosomes 5, 9, 15, and 21 correlated with Intramuscular fat. This study provided a novel low-cost method for QTLs mapping and identify molecular markers of phenotypical changes in a small mixed population.


2021 ◽  
Author(s):  
Yun Zhu ◽  
Liyun Han ◽  
Peng Li ◽  
Xiaolong Kang ◽  
Xingang Dan ◽  
...  

Abstract Bulked Segregant Analysis(BSA)is a rapid strategy for identifying genetic markers in specific regions of the phenotypical population and it has been widely used for QTLs mapping in smaller mixed F2 and F3 populations. We applied a modified BSA method to assessed genome-wide homozygous and heterozygous linkage patterns in the Chinese Wagyu Beef Cattle F2/F3 mixed population. Two overlapped regions from F2 and F3 populations on autosomes were found with high-density heterozygote alleles between high and low intramuscular fat groups. Regions from 24.8M~29.6M of chromosome 23 were identified as most significantly correlated to the intramuscular fat in our samples. We also identified other 4 potential loci on chromosomes 5, 9, 15, and 21 correlated with Intramuscular fat. This study provided a novel low-cost method for QTLs mapping and identify molecular markers of phenotypical changes in a small mixed population.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Wenxuan Huang ◽  
Jingjing Hou ◽  
Quan Hu ◽  
Jie An ◽  
Yanwei Zhang ◽  
...  

AbstractAs soybean plays an indispensable role in the supply of vegetable oil and protein, balancing the relationship between seed quality and yield traits according to human demand has become an important breeding goal for soybean improvement. Here, 256 intraspecific recombinant inbred lines (RILs), derived from a cross between Qi Huang No.34 (QH34) and Ji Dou No.17 (JD17), were used for quantitative trait loci (QTLs) mapping with remarkable four chemical and physical properties with a purpose for exploring the distribution of excellent alleles in germplasm resources in China. A total of 25 QTLs were detected, of which 10 QTLs inherited the alleles from the parent QH34. Pedigree research on favorable alleles on these QTLs showed the process of excellent alleles pyramided into QH34. Meta-analysis of the 25 QTLs by comparing with existed QTLs in previous study identified 17 novel QTLs. QTLs with pleiotropic effects have been detected. Furthermore, three representative elite recombinant inbred lines in different locations that have great potential in soybean breeding were selected, and finally, four seed weight-related candidate genes were identified. The discovery of these QTLs provides a new guidance for combining the diversity and rarity of germplasm resources, which can effectively increase population genetic diversity and broaden genetic basis of varieties.


2020 ◽  
Vol 21 (13) ◽  
pp. 4615 ◽  
Author(s):  
Weilong Kong ◽  
Chenhao Zhang ◽  
Yalin Qiang ◽  
Hua Zhong ◽  
Gangqing Zhao ◽  
...  

Rice (Oryza sativa L.) is a widely cultivated food crop around the world, especially in Asia. However, rice seedlings often suffer from cold stress, which affects their growth and yield. Here, RNA-seq analysis and Meta-QTLs mapping were performed to understand the molecular mechanisms underlying cold tolerance in the roots of 14-day-old seedlings of rice (RPY geng, cold-tolerant genotype). A total of 4779 of the differentially expressed genes (DEGs) were identified, including 2457 up-regulated and 2322 down-regulated DEGs. The GO, COG, KEEG, and Mapman enrichment results of DEGs revealed that DEGs are mainly involved in carbohydrate transport and metabolism, signal transduction mechanisms (plant hormone signal transduction), biosynthesis, transport and catabolism of secondary metabolites (phenylpropanoid biosynthesis), defense mechanisms, and large enzyme families mechanisms. Notably, the AP2/ERF-ERF, NAC, WRKY, MYB, C2H2, and bHLH transcription factors participated in rice’s cold–stress response and tolerance. On the other hand, we mapped the identified DEGs to 44 published cold–stress-related genes and 41 cold-tolerant Meta-QTLs regions. Of them, 12 DEGs were the published cold–stress-related genes and 418 DEGs fell into the cold-tolerant Meta-QTLs regions. In this study, the identified DEGs and the putative molecular regulatory network can provide insights for understanding the mechanism of cold stress tolerance in rice. In addition, DEGs in KEGG term-enriched terms or cold-tolerant Meta-QTLs will help to secure key candidate genes for further functional studies on the molecular mechanism of cold stress response in rice.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zemao Yang ◽  
Youxin Yang ◽  
Zhigang Dai ◽  
Dongwei Xie ◽  
Qing Tang ◽  
...  

Abstract Background Jute (Corchorus spp.) is the most important natural fiber crop after cotton in terms of cultivation area and production. Salt stress greatly restricts plant development and growth. A high-density genetic linkage map is the basis of quantitative trait locus (QTLs) mapping. Several high-density genetic maps and QTLs mapping related to salt tolerance have been developed through next-generation sequencing in many crop species. However, such studies are rare for jute. Only several low-density genetic maps have been constructed and no salt tolerance-related QTL has been mapped in jute to date. Results We developed a high-density genetic map with 4839 single nucleotide polymorphism markers spanning 1375.41 cM and an average distance of 0.28 cM between adjacent markers on seven linkage groups (LGs) using an F2 jute population, LGs ranged from LG2 with 299 markers spanning 113.66 cM to LG7 with 1542 markers spanning 350.18 cM. In addition, 99.57% of gaps between adjacent markers were less than 5 cM. Three obvious and 13 minor QTLs involved in salt tolerance were identified on four LGs explaining 0.58–19.61% of the phenotypic variance. The interval length of QTL mapping varied from 1.3 to 20.2 cM. The major QTL, qJST-1, was detected under two salt stress conditions that explained 11.81 and 19.61% of the phenotypic variation, respectively, and peaked at 19.3 cM on LG4. Conclusions We developed the first high-density and the most complete genetic map of jute to date using a genotyping-by-sequencing approach. The first QTL mapping related to salt tolerance was also carried out in jute. These results should provide useful resources for marker-assisted selection and transgenic breeding for salt tolerance at the germination stage in jute.


2019 ◽  
Vol 20 (14) ◽  
pp. 3417 ◽  
Author(s):  
Jingguang Chen ◽  
Wenli Zou ◽  
Lijun Meng ◽  
Xiaorong Fan ◽  
Guohua Xu ◽  
...  

Cadmium (Cd), as a heavy metal, presents substantial biological toxicity and has harmful effects on human health. To lower the ingress levels of human Cd, it is necessary for Cd content in food crops to be reduced, which is of considerable significance for ensuring food safety. This review will summarize the genetic traits of Cd accumulation in rice and examine the mechanism of Cd uptake and translocation in rice. The status of genes related to Cd stress and Cd accumulation in rice in recent years will be summarized, and the genes related to Cd accumulation in rice will be classified according to their functions. In addition, an overview of quantitative trait loci (QTLs) mapping populations in rice will be introduced, aiming to provide a theoretical reference for the breeding of rice varieties with low Cd accumulation. Finally, existing problems and prospects will be put forward.


Sign in / Sign up

Export Citation Format

Share Document