Highly repetitive sequences in B chromosomes of Secale cereale revealed by fluorescence in situ hybridization

Genome ◽  
1994 ◽  
Vol 37 (4) ◽  
pp. 709-712 ◽  
Author(s):  
Angeles Cuadrado ◽  
Nicolas Jouve

An analysis of the presence and distribution of the rye and wheat repeated sequences in rye B chromosomes was carried out by fluorescent in situ hybridization. Probes used consisted of three highly repetitive sequences from rye (pSc119.2, pSc74, and pSc34) and the multigene families for the 25S–5.8S–18S and 5S rDNA from wheat (pTa71 and pTa794, respectively). pSc74 and pSc119.2 showed hybridization signals in the telomeric regions of rye B chromosomes. The remaining DNA clones did not hybridize to the B chromosomes.Key words: Secale cereale, rye, repetitive DNA, fluorescence in situ hybridization, B chromosomes.

Genome ◽  
2003 ◽  
Vol 46 (5) ◽  
pp. 893-905 ◽  
Author(s):  
M Kubaláková ◽  
M Valárik ◽  
J Bartoš ◽  
J Vrána ◽  
J Cíhalíková ◽  
...  

Procedures for chromosome analysis and sorting using flow cytometry (flow cytogenetics) were developed for rye (Secale cereale L.). Suspensions of intact chromosomes were prepared by mechanical homogenization of synchronized root tips after mild fixation with formaldehyde. Histograms of relative fluorescence intensity obtained after the analysis of DAPI-stained chromosomes (flow karyotypes) were characterized and the chromosome content of the DNA peaks was determined. Chromosome 1R could be discriminated on a flow karyotype of S. cereale 'Imperial'. The remaining rye chromosomes (2R–7R) could be discriminated and sorted from individual wheat–rye addition lines. The analysis of lines with reconstructed karyotypes demonstrated a possibility of sorting translocation chromosomes. Supernumerary B chromosomes could be sorted from an experimental rye population and from S. cereale 'Adams'. Flow-sorted chromosomes were identified by fluorescence in situ hybridization (FISH) with probes for various DNA repeats. Large numbers of chromosomes of a single type sorted onto microscopic slides facilitated detection of rarely occurring chromosome variants by FISH with specific probes. PCR with chromosome-specific primers confirmed the identity of sorted fractions and indicated suitability of sorted chromosomes for physical mapping. The possibility to sort large numbers of chromosomes opens a way for the construction of large-insert chromosome-specific DNA libraries in rye.Key words: chromosome isolation, chromosome sorting, fluorescence in situ hybridization, repetitive DNA sequences, wheat-rye addition lines, B chromosomes, physical mapping.


Genome ◽  
2011 ◽  
Vol 54 (3) ◽  
pp. 184-195 ◽  
Author(s):  
Robert T. Gaeta ◽  
Tatiana V. Danilova ◽  
Changzeng Zhao ◽  
Rick E. Masonbrink ◽  
Morgan E. McCaw ◽  
...  

Maize-engineered minichromosomes are easily recovered from telomere-truncated B chromosomes but are rarely recovered from A chromosomes. B chromosomes lack known genes, and their truncation products are tolerated and transmitted during meiosis. In contrast, deficiency gametes resulting from truncated A chromosomes prevent their transmission. We report here a de novo compensating translocation that permitted recovery of a large truncation of chromosome 1 in maize. The truncation (trunc-1) and translocation with chromosome 6 (super-6) occurred during telomere-mediated truncation experiments and were characterized using single-gene fluorescent in situ hybridization (FISH) probes. The truncation contained a transgene signal near the end of the broken chromosome and transmitted together with the compensating translocation as a heterozygote to approximately 41%–55% of progeny. Transmission as an addition chromosome occurred in ~15% of progeny. Neither chromosome transmitted through pollen. Transgene expression (Bar) cosegregated with trunc-1 transcriptionally and phenotypically. Meiosis in T1 plants revealed eight bivalents and one tetravalent chain composed of chromosome 1, trunc-1, chromosome 6, and super-6 in diplotene and diakinesis. Our data suggest that de novo compensating translocations allow recovery of truncated A chromosomes by compensating deficiency in female gametes and by affecting chromosome pairing and segregation. The truncated chromosome can be maintained as an extra chromosome or together with the super-6 as a heterozygote.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 375 ◽  
Author(s):  
Xiaomei Luo ◽  
Juncheng Liu

We report the cytogenetic map for a collection of species in the Oleaceae, and test similarities among the karyotypes relative to their known species phylogeny. The oligonucleotides 5S ribosomal DNA (rDNA), (AGGGTTT)3, and (TTG)6 were used as fluorescence in situ hybridization (FISH) probes to locate the corresponding chromosomes in three Oleaceae genera: Fraxinus pennsylvanica, Syringa oblata, Ligustrum lucidum, and Ligustrum × vicaryi. Forty-six small chromosomes were identified in four species. (AGGGTTT)3 signals were observed on almost all chromosome ends of four species, but (AGGGTTT)3 played no role in distinguishing the chromosomes but displayed intact chromosomes and could thus be used as a guide for finding chromosome counts. (TTG)6 and 5S rDNA signals discerned several chromosomes located at subterminal or central regions. Based on the similarity of the signal pattern (mainly in number and location and less in intensity) of the four species, the variations in the 5S rDNA and (TTG)6 distribution can be ordered as L. lucidum < L. × vicaryi < F. pennsylvanica < S. oblata. Variations have observed in the three genera. The molecular cytogenetic data presented here might serve as a starting point for further larger-scale elucidation of the structure of the Oleaceae genome, and comparison with the known phylogeny of Oleaceae family.


Genome ◽  
1995 ◽  
Vol 38 (6) ◽  
pp. 1061-1069 ◽  
Author(s):  
A. Cuadrado ◽  
N. Jouve ◽  
C. Ceoloni

The molecular characterization of heterochromatin in six lines of rye has been performed using fluorescence in situ hybridization (FISH). The highly repetitive rye DNA sequences pSc 119.2, pSc74, and pSc34, and the probes pTa71 and pSc794 containing the 25S–5.8S–18S rDNA (NOR) and the 5S rDNA multigene families, respectively, were used. This allowed the individual identification of all seven rye chromosomes and most chromosome arms in all lines. All varieties showed similar but not identical patterns. A standard in situ hybridization map was constructed following the nomenclature system recommended for C-bands. All FISH sites observed appeared to correspond well with C-band locations, but not all C-banding sites coincided with hybridization sites of the repetitive DNA probes used. Quantitative and qualitative differences between different varieties were found for in situ hybridization response at corresponding sites. Variation between plants and even between homologous chromosomes of the same plant was found in open-pollinated lines. In inbred lines, the in situ pattern of the homologues was practically identical and no variation between plants was detected. The observed quantitative and qualitative differences are consistent with a corresponding variation for C-bands detected both within and between cultivars.Key words: fluorescence in situ hybridization, repetitive DNA, rye, Secale cereale, polymorphism.


Caryologia ◽  
2008 ◽  
Vol 61 (4) ◽  
pp. 411-416 ◽  
Author(s):  
Costa Fabiane R. ◽  
Telma N. S. Pereira ◽  
George L. Hodnett ◽  
Messias G. Pereira ◽  
David M. Stelly

Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 710-717 ◽  
Author(s):  
B. Kolano ◽  
B.W. Gardunia ◽  
M. Michalska ◽  
A. Bonifacio ◽  
D. Fairbanks ◽  
...  

The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18–24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18–24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12–13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12–13P was very similar to GISH results, suggesting that the 12–13P sequence constitutes a major part of the repetitive DNA of C. quinoa.


Sign in / Sign up

Export Citation Format

Share Document