scholarly journals Microsatellite DNA markers in Populus tremuloides

Genome ◽  
2000 ◽  
Vol 43 (2) ◽  
pp. 293-297 ◽  
Author(s):  
Muhammad H Rahman ◽  
S Dayanandan ◽  
Om P Rajora

Markers for eight new microsatellite DNA or simple sequence repeat (SSR) loci were developed and characterized in trembling aspen (Populus tremuloides) from a partial genomic library. Informativeness of these microsatellite DNA markers was examined by determining polymorphisms in 38 P. tremuloides individuals. Inheritance of selected markers was tested in progenies of controlled crosses. Six characterized SSR loci were of dinucleotide repeats (two perfect and four imperfect), and one each of trinucleotide and tetranucleotide repeats. The monomorphic SSR locus (PTR15) was of a compound imperfect dinucleotide repeat. The primers of one highly polymorphic SSR locus (PTR7) amplified two loci, and alleles could not be assigned to a specific locus. At the other six polymorphic loci, 25 alleles were detected in 38 P. tremuloides individuals; the number of alleles ranged from 2 to 7, with an average of 4.2 alleles per locus, and the observed heterozygosity ranged from 0.05 to 0.61, with an average of 0.36 per locus. The two perfect dinucleotide and one trinucleotide microsatellite DNA loci were the most informative. Microsatellite DNA variants of four SSR loci characterized previously followed a single-locus Mendelian inheritance pattern, whereas those of PTR7 from the present study showed a two-locus Mendelian inheritance pattern in controlled crosses. The microsatellite DNA markers developed and reported here could be used for assisting various genetic, breeding, biotechnology, genome mapping, conservation, and sustainable forest management programs in poplars. Key words: poplar, microsatellites, genetic mapping, simple sequence repeat (SSR) markers, DNA fingerprinting.

Genome ◽  
2002 ◽  
Vol 45 (6) ◽  
pp. 1083-1094 ◽  
Author(s):  
Muhammad H Rahman ◽  
Om P Rajora

Accurate identification of Populus clones and cultivars is essential for effective selection, breeding, and genetic resource management programs. The unit of cultivation and breeding in poplars is a clone, and individual cultivars are normally represented by a single clone. Microsatellite DNA markers of 10 simple sequence repeat loci were used for genetic fingerprinting and differentiation of 96 clones/cultivars and varieties belonging to six Populus species (P. deltoides, P. nigra, P. balsamifera, P. trichocarpa, P. grandidentata, and P. maximowiczii) from three sections of the genus. All 96 clones/cultivars could be uniquely fingerprinted based on their single- or multilocus microsatellite genotypes. The five P. grandidentata clones could be differentiated based on their single-locus genotypes, while six clones of P. trichocarpa and 11 clones of P. maximowiczii could be identified by their two-locus genotypes. Twenty clones of P. deltoides and 25 clones of P. nigra could be differentiated by their multilocus genotypes employing three loci, and 29 clones of P. balsamifera required the use of multilocus genotypes at five loci for their genetic fingerprinting and differentiation. The loci PTR3, PTR5, and PTR7 were found to be the most informative for genetic fingerprinting and differentiation of the clones. The mean number of alleles per locus ranged from 2.9 in P. trichocarpa or P. grandidentata to 6.0 in P. balsamifera and 11.2 in 96 clones of the six species. The mean number of observed genotypes per locus ranged from 2.4 in P. grandidentata to 7.4 in P. balsamifera and 19.6 in 96 clones of the six species. The mean number of unique genotypes per locus ranged from 1.3 in P. grandidentata to 3.9 in P. deltoides and 8.8 in 96 clones of the six species. The power of discrimination of the microsatellite DNA markers in the 96 clones ranged from 0.726 for PTR4 to 0.939 for PTR7, with a mean of 0.832 over the 10 simple sequence repeat loci. Clones/cultivars from the same species showed higher microsatellite DNA similarities than the clones from the different species. A UPGMA cluster plot constructed from the microsatellite genotypic similarities separated the 96 clones into six major groups corresponding to their species. Populus nigra var. italica clones were genetically differentiated from the P. nigra var. nigra clones. Microsatellite DNA markers could be useful in genetic fingerprinting, identification, classification, certification, and registration of clones, clultivars, and varieties as well as genetic resource management and protection of plant breeders' rights in Populus.Key words: Populus, simple sequence repeat markers, clonal identification, genetic fingerprinting, clone–cultivar relationships.


Author(s):  
Júlia Halász ◽  
Noémi Makovics-Zsohár ◽  
Ferenc Szőke ◽  
Sezai Ercisli ◽  
Attila Hegedűs

AbstractPolyploid Prunus spinosa (2n = 4 ×) and P. domestica subsp. insititia (2n = 6 ×) represent enormous genetic potential in Central Europe, which can be exploited in breeding programs. In Hungary, 16 cultivar candidates and a recognized cultivar ‘Zempléni’ were selected from wild-growing populations including ten P. spinosa, four P. domestica subsp. insititia and three P. spinosa × P. domestica hybrids (2n = 5 ×) were also created. Genotyping in eleven simple sequence repeat (SSR) loci and the multiallelic S-locus was used to characterize genetic variability and achieve a reliable identification of tested accessions. Nine SSR loci proved to be polymorphic and eight of those were highly informative (PIC values ˃ 0.7). A total of 129 SSR alleles were identified, which means 14.3 average allele number per locus and all accessions but two clones could be discriminated based on unique SSR fingerprints. A total of 23 S-RNase alleles were identified and the complete and partial S-genotype was determined for 10 and 7 accessions, respectively. The DNA sequence was determined for a total of 17 fragments representing 11 S-RNase alleles. ‘Zempléni’ was confirmed to be self-compatible carrying at least one non-functional S-RNase allele (SJ). Our results indicate that the S-allele pools of wild-growing P. spinosa and P. domestica subsp. insititia are overlapping in Hungary. Phylogenetic and principal component analyses confirmed the high level of diversity and genetic differentiation present within the analysed accessions and indicated putative ancestor–descendant relationships. Our data confirm that S-locus genotyping is suitable for diversity studies in polyploid Prunus species but non-related accessions sharing common S-alleles may distort phylogenetic inferences.


2003 ◽  
Vol 128 (3) ◽  
pp. 374-380 ◽  
Author(s):  
L.J. Grauke ◽  
Muhammad J. Iqbal ◽  
Avutu S. Reddy ◽  
Tommy E. Thompson

A microsatellite-enriched library was developed from `Halbert', a native pecan [Carya illinoinensis (Wangenh.) K. Koch] selection from Coleman County, Texas. A genomic library enriched for simple sequence repeats (SSR) containing 6144 clones was archived in 384 well plates for screening. In total, 439 clones were identified after Southern hybridization using di- and tri-nucleotide repeats as probes. In total, 125 positive clones were sequenced and primers were designed for 24 repeats. The SSR markers chosen for analysis include di-(CT and GA) and tri-nucleotide repeats (CTT, GAA and GAT). Of the 24 primer pairs tested, 19 successfully amplified microsatellites from `Halbert'. DNA was isolated from 48 pecan and hickory accessions selected to strategically represent the genetic diversity of the National Clonal Germplasm Repository (NCGR) Carya collections. The 19 SSR primers that produced good amplification products in `Halbert' were used to evaluate the collection, with 11 revealing polymorphism. The number of fragments amplified with different primer combinations ranged from 4 to 32 in the 48 genotypes tested. Evaluation of the data confirms the utility of the microsatellites in delimiting known relationships.


2011 ◽  
Vol 136 (2) ◽  
pp. 116-128 ◽  
Author(s):  
Xinwang Wang ◽  
Phillip A. Wadl ◽  
Cecil Pounders ◽  
Robert N. Trigiano ◽  
Raul I. Cabrera ◽  
...  

Genetic diversity was estimated for 51 Lagerstroemia indica L. cultivars, five Lagerstroemia fauriei Koehne cultivars, and 37 interspecific hybrids using 78 simple sequence repeat (SSR) markers. SSR loci were highly variable among the cultivars, detecting an average of 6.6 alleles (amplicons) per locus. Each locus detected 13.6 genotypes on average. Cluster analysis identified three main groups that consisted of individual cultivars from L. indica, L. fauriei, and their interspecific hybrids. However, only 18.1% of the overall variation was the result of differences between these groups, which may be attributable to pedigree-based breeding strategies that use current cultivars as parents for future selections. Clustering within each group generally reflected breeding pedigrees but was not supported by bootstrap replicates. Low statistical support was likely the result of low genetic diversity estimates, which indicated that only 25.5% of the total allele size variation was attributable to differences between the species L. indica and L. fauriei. Most allele size variation, or 74.5%, was common to L. indica and L. fauriei. Thus, introgression of other Lagestroemia species such as Lagestroemia limii Merr. (L. chekiangensis Cheng), Lagestroemia speciosa (L.) Pers., and Lagestroemia subcostata Koehne may significantly expand crapemyrtle breeding programs. This study verified relationships between existing cultivars and identified potentially untapped sources of germplasm.


Genome ◽  
1995 ◽  
Vol 38 (5) ◽  
pp. 991-998 ◽  
Author(s):  
Jörg Becker ◽  
Manfred Heun

The broad use of microsatellites as a tool for constructing linkage maps in plants has been limited by the need for sequence data to detect the underlying simple sequence repeats. Therefore, random amplified microsatellite polymorphisms (RAMPs) were studied as an alternative approach for barley mapping. Labelled (GA)n simple sequence repeat primers were combined with RAPD primers of different length and sequence to generate RAMPs. To get additional polymorphisms (called dRAMPs), the obtained products were also analysed after digestion with MseI. There were 0–11 polymorphisms found per primer combination. Sixty RAMPs/dRAMPs identifying 40 new loci were mapped onto a barley RFLP map. The new DNA markers are found on all chromosomes and they increased the length of the barley map by 174 cM to a total of 1270 cM. Interestingly, the RAMPs/dRAMPs caused stretching effects in genome areas where stretching was also observed for AFLPs.Key words: barley, microsatellite, mapping, RAMP, RFLP.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0127812 ◽  
Author(s):  
Jing Xiao ◽  
Jin Zhao ◽  
Mengjun Liu ◽  
Ping Liu ◽  
Li Dai ◽  
...  

Genome ◽  
1996 ◽  
Vol 39 (4) ◽  
pp. 628-633 ◽  
Author(s):  
J. E. Bowers ◽  
G. S. Dangl ◽  
R. Vignani ◽  
C. P. Meredith

Four new simple sequence repeat (SSR) loci (designated VVMD5, VVMD6, VVMD7, and VVMD8) were characterized in grape and analyzed by silver staining in 77 cultivars of Vitis vinifera. Amplification products ranged in size from 141 to 263 base pairs (bp). The number of alleles observed per locus ranged from 5 to 11 and the number of diploid genotypes per locus ranged from 13 to 27. At each locus at least 75% of the cultivars were heterozygous. Alleles differing in length by only 1 bp could be distinguished by silver staining, and size estimates were within 1 or 2 bp, depending on the locus, of those obtained by fluorescence detection at previously reported loci. Allele frequencies were generally similar in wine grapes and table grapes, with some exceptions. Some alleles were found only in one of the two groups of cultivars. All 77 cultivars were distinguished by the four loci with the exception of four wine grapes considered to be somatic variants of the same cultivar, 'Pinot noir', 'Pinot gris', 'Pinot blanc', and 'Meunier'; two table grapes that are known to be synonymous, 'Keshmesh' and 'Thompson Seedless'; and three table grapes, 'Dattier', 'Rhazaki Arhanon', and 'Markandi', the first two of which have been suggested to be synonymous. Although the high polymorphism at grape SSR loci suggests that very few loci would theoretically be needed to separate all cultivars, the economic and legal significance of grape variety identification requires the increased resolution that can be provided by a larger number of loci. The ease with which SSR markers and data can be shared internationally should encourage their broad use, which will in turn increase the power of these markers for both identification and genetic analysis of grape. Key words : grape, Vitis, microsatellite, simple sequence repeat, DNA typing, identification.


Sign in / Sign up

Export Citation Format

Share Document