Characterization of HTATIP2 and its role during hair follicle cycles in Angora rabbit

Genome ◽  
2020 ◽  
Vol 63 (3) ◽  
pp. 179-187 ◽  
Author(s):  
Bohao Zhao ◽  
Yang Chen ◽  
Shuaishuai Hu ◽  
Naisu Yang ◽  
Ming Liu ◽  
...  

Hair follicle (HF) growth and cycling is a complex biological process that occurs in most mammals. As HF growth and cycling directly impacts rabbit wool yield, it is important to better understand the potential regulation pattern of HF development. Our previous study demonstrated that HTATIP2 may participate in regulating rabbit HF cycles, but the molecular mechanism of HTATIP2 remained unclear. In this study, the coding sequence of the HTATIP2 gene in Angora rabbit was cloned. The length of the coding region sequence was 840 bp, which could code 279 amino acids, and exhibited high homology in different mammals. Bioinformatics analyses indicated that the HTATIP2 protein is stable, hydrophilic, located around the cytoplasm, and has a putative signal peptide. Moreover, we verified that HTATIP2 is highly expressed during catagen and telogen of the HF cycle. The overexpression vector was constructed and siRNAs were designed. Overexpression and knockdown of HTATIP2 appeared to regulate JAK-STAT pathway genes, such as BCL2, CCND1, c-Myc, and STAT2. It is therefore likely that HTATIP2 promotes cell apoptosis and inhibits cell proliferation. Our results indicate that HTATIP2 is highly expressed during catagen and telogen and may play an important role in JAK-STAT signaling. This study provides a theoretical foundation for investigating HTATIP2 in biological processes.

2020 ◽  
Vol 21 (6) ◽  
pp. 2021
Author(s):  
Maria Ventimiglia ◽  
Claudio Pugliesi ◽  
Alberto Vangelisti ◽  
Gabriele Usai ◽  
Tommaso Giordani ◽  
...  

Much has been said about sunflower (Helianthus annuus L.) retrotransposons, representing the majority of the sunflower’s repetitive component. By contrast, class II transposons remained poorly described within this species, as they present low sequence conservation and are mostly lacking coding domains, making the identification and characterization of these transposable elements difficult. The transposable element Tetu1, is a non-autonomous CACTA-like element that has been detected in the coding region of a CYCLOIDEA (CYC) gene of a sunflower mutant, tubular ray flower (turf). Based on our knowledge of Tetu1, the publicly available genome of sunflower was fully scanned. A combination of bioinformatics analyses led to the discovery of 707 putative CACTA sequences: 84 elements with complete ends and 623 truncated elements. A detailed characterization of the identified elements allowed further classification into three subgroups of 347 elements on the base of their terminal repeat sequences. Only 39 encode a protein similar to known transposases (TPase), with 10 TPase sequences showing signals of activation. Finally, an analysis of the proximity of CACTA transposons to sunflower genes showed that the majority of CACTA elements are close to the nearest gene, whereas a relevant fraction resides within gene-encoding sequences, likely interfering with sunflower genome functionality and organization.


1992 ◽  
Vol 67 (01) ◽  
pp. 063-065 ◽  
Author(s):  
Sherryl A M Taylor ◽  
Jacalyn Duffin ◽  
Cherie Cameron ◽  
Jerome Teitel ◽  
Bernadette Garvey ◽  
...  

SummaryChristmas disease was first reported as a distinct clinical entity in two manuscripts published in 1952 (1, 2). The eponym associated with this disorder, is the surname of the first patient examined in detail and reported by Biggs and colleagues in a paper describing the clinical and laboratory features of seven affected individuals (3). This patient has severe factor IX coagulant deficiency (less than 0.01 units/ml) and no detectable circulating factor IX antigen (less than 0.01 units/ml). Coding sequence and splice junctions of the factor IX gene from this patient have been amplified in vitro through the polymerase chain reaction (PCR). One nucleotide substitution was identified at nucleotide 30,070 where a guanine was replaced by a cytosine. This mutation alters the amino acid encoded at position 206 in the factor IX protein from cysteine to serine. The non conservative nature of this substitution, the absence of this change in more than 200 previously sequenced factor IX genes and the fact that the remainder of the coding region of this gene was normal, all provide strong circumstantial evidence in favour of this change being the causative mutation in this patient. The molecular characterization of this novel mutation in the index case of Christmas disease, contributes to the rapidly expanding body of knowledge pertaining to Christmas disease pathogenesis.


2021 ◽  
pp. 1-7
Author(s):  
Jian Gao ◽  
Sheng Lin ◽  
Shiguo Chen ◽  
Qunyan Wu ◽  
Kaifeng Zheng ◽  
...  

<b><i>Background:</i></b> Glucose-6-phosphate dehydrogenase (G6PD) deficiency is caused by one or more mutations in the G6PD gene on chromosome X. This study aimed to characterize the G6PD gene variant distribution in Shenzhen of Guangdong province. <b><i>Methods:</i></b> A total of 33,562 individuals were selected at the hospital for retrospective analysis, of which 1,213 cases with enzymatic activity-confirmed G6PD deficiency were screened for G6PD gene variants. Amplification refractory mutation system PCR was first used to screen the 6 dominant mutants in the Chinese population (c.1376G&#x3e;T, c.1388G&#x3e;A, c.95A&#x3e;G, c.1024C&#x3e;T, c.392G&#x3e;T, and c.871G&#x3e;A). If the 6 hotspot variants were not found, next-generation sequencing was then performed. Finally, Sanger sequencing was used to verify all the mutations. <b><i>Results:</i></b> The incidence of G6PD deficiency in this study was 3.54%. A total of 26 kinds of mutants were found in the coding region, except for c.-8-624T&#x3e;C, which was in the noncoding region. c.1376G&#x3e;T and c.1388G&#x3e;A, both located in exon 12, were the top 2 mutants, accounting for 68.43% of all individuals. The 6 hotspot mutations had a cumulative proportion of 94.02%. <b><i>Conclusions:</i></b> This study provided detailed characteristics of G6PD gene variants in Shenzhen, and the results would be valuable to enrich the knowledge of G6PD deficiency.


1988 ◽  
Vol 263 (9) ◽  
pp. 4236-4241 ◽  
Author(s):  
N Martinet ◽  
H C Kim ◽  
J E Girard ◽  
T P Nigra ◽  
D H Strong ◽  
...  

2001 ◽  
Vol 5 (3) ◽  
pp. 137-145 ◽  
Author(s):  
CLAUDIA R. VIANNA ◽  
THILO HAGEN ◽  
CHEN-YU ZHANG ◽  
ERIC BACHMAN ◽  
OLIVIER BOSS ◽  
...  

The cDNA of an uncoupling protein (UCP) homolog has been cloned from the swallow-tailed hummingbird, Eupetomena macroura. The hummingbird uncoupling protein (HmUCP) cDNA was amplified from pectoral muscle (flight muscle) using RT-PCR and primers for conserved domains of various known UCP homologs. The rapid amplification of cDNA ends (RACE) method was used to complete the cloning of the 5′ and 3′ ends of the open reading frame. The HmUCP coding region contains 915 nucleotides, and the deduced protein sequence consists of 304 amino acids, being ∼72, 70, and 55% identical to human UCP3, UCP2, and UCP1, respectively. The uncoupling activity of this novel protein was characterized in yeast. In this expression system, the 12CA5-tagged HmUCP fusion protein was detected by Western blot in the enriched mitochondrial fraction. Similarly to rat UCP1, HmUCP decreased the mitochondrial membrane potential as measured in whole yeast by uptake of the fluorescent potential-sensitive dye 3′,3-dihexyloxacarbocyanine iodide. The HmUCP mRNA is primarily expressed in skeletal muscle, but high levels can also be detected in heart and liver, as assessed by Northern blot analysis. Lowering the room’s temperature to 12–14°C triggered the cycle torpor/rewarming, typical of hummingbirds. Both in the pectoral muscle and heart, HmUCP mRNA levels were 1.5- to 3.4-fold higher during torpor. In conclusion, this is the first report of an UCP homolog in birds. The data indicate that HmUCP has the potential to function as an UCP and could play a thermogenic role during rewarming.


Author(s):  
Willames De Albuquerque Soares

Temperature is a fundamentally important factor for understanding the physical, chemical, and biological processes that occur in soil. However, there are few studies in the Brazilian semiarid zone that seek to understand how soil degradation affects its thermal characteristics. The objective of this study was to evaluate the influence of cultivation techniques on the thermal characterization of soil, using the model proposed by Johansen. The study was conducted in the Agreste region of the state of Pernambuco, Brazil on two plots of land, one with native vegetation (Caatinga) and the other with spineless cactus (O. ficus - indica). It was observed that the procedures used to prepare the soil for cultivation of spineless cactus caused a reduction in the capacity to transmit the surface temperature to the interior of the soil. Changes in the physical properties of the soil required for cultivation resulted in a reduction in the average value of the volumetric heat capacity of about 22%; an increase of approximately 5% in the average volumetric heat capacity and a 26% increase in the thermal diffusivity of the soil, as well as a reduction of approximately 50% in the heat flux from the surface of the soil.


BMC Genetics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Silvia Parolo ◽  
Antonella Lisa ◽  
Davide Gentilini ◽  
Anna Maria Di Blasio ◽  
Simona Barlera ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuan Dai ◽  
Weijia Luo ◽  
Xiaojing Yue ◽  
Wencai Ma ◽  
Jing Wang ◽  
...  

Abstract The Rho family of GTPases consists of 20 members including RhoE. Here, we discover the existence of a short isoform of RhoE designated as RhoEα, the first Rho GTPase isoform generated from alternative translation. Translation of this new isoform is initiated from an alternative start site downstream of and in-frame with the coding region of the canonical RhoE. RhoEα exhibits a similar subcellular distribution while its protein stability is higher than RhoE. RhoEα contains binding capability to RhoE effectors ROCK1, p190RhoGAP and Syx. The distinct transcriptomes of cells with the expression of RhoE and RhoEα, respectively, are demonstrated. The data propose distinctive and overlapping biological functions of RhoEα compared to RhoE. In conclusion, this study reveals a new Rho GTPase isoform generated from alternative translation. The discovery provides a new scope of understanding the versatile functions of small GTPases and underlines the complexity and diverse roles of small GTPases.


Sign in / Sign up

Export Citation Format

Share Document