Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport

2007 ◽  
Vol 32 (3) ◽  
pp. 557-566 ◽  
Author(s):  
Gregory D. Cartee ◽  
Jørgen F.P. Wojtaszewski

Insulin and exercise, the most important physiological stimuli to increase glucose transport in skeletal muscle, trigger a redistribution of GLUT4 glucose transporter proteins from the cell interior to the cell surface, thereby increasing glucose transport capacity. The most distal insulin signaling protein that has been linked to GLUT4 translocation, Akt substrate of 160 kDa (AS160), becomes phosphorylated in insulin-stimulated 3T3-L1 adipocytes; this is im​portant for insulin-stimulated GLUT4 translocation and glucose transport. Insulin also induces a rapid and dose-dependent increase in AS160 phosphorylation in skeletal muscle. Available data from skeletal muscle support the concepts developed in adipocytes with regard to the role AS160 plays in the regulation of insulin-stimulated glucose transport. In vivo exercise, in vitro contractions, or in situ contractions can also stimulate AS160 phosphorylation. AMP-activated protein kinase (AMPK) is likely important for phosphorylating AS160 in response to exercise/contractile activity, whereas Akt2 appears to be important for insulin-stimulated AS160 phosphorylation in muscle. Evidence of a role for AS160 in exercise/contraction-stimulated glucose uptake is currently inconclusive. The distinct signaling pathways that are stimulated by insulin and exercise/contraction converge at AS160. Although AS160 phosphorylation is apparently important for insulin-stimulated GLUT4 translocation and glucose transport, it is uncertain whether elevated AS160 phosphorylation plays a similar role with exercise/contraction.

1995 ◽  
Vol 305 (2) ◽  
pp. 465-470 ◽  
Author(s):  
J F Hocquette ◽  
F Bornes ◽  
M Balage ◽  
P Ferre ◽  
J Grizard ◽  
...  

It is well accepted that skeletal muscle is a major glucose-utilizing tissue and that insulin is able to stimulate in vivo glucose utilization in ruminants as in monogastrics. In order to determine precisely how glucose uptake is controlled in various ruminant muscles, particularly by insulin, this study was designed to investigate in vitro glucose transport and insulin-regulatable glucose-transporter protein (GLUT4) in muscle from calf and goat. Our data demonstrate that glucose transport is the rate-limiting step for glucose uptake in bovine fibre strips, as in rat muscle. Insulin increases the rate of in vitro glucose transport in bovine muscle, but to a lower extent than in rat muscle. A GLUT4-like protein was detected by immunoblot assay in all insulin-responsive tissues from calf and goat (heart, skeletal muscle, adipose tissue) but not in liver, brain, erythrocytes and intestine. Unlike the rat, bovine and goat GLUT4 content is higher in glycolytic and oxido-glycolytic muscles than in oxidative muscles. In conclusion, using both a functional test (insulin stimulation of glucose transport) and an immunological approach, this study demonstrates that ruminant muscles express GLUT4 protein. Our data also suggest that, in ruminants, glucose is the main energy-yielding substrate for glycolytic but not for oxidative muscles, and that insulin responsiveness may be lower in oxidative than in other skeletal muscles.


2010 ◽  
Vol 299 (2) ◽  
pp. E169-E179 ◽  
Author(s):  
Hans P. M. M. Lauritzen ◽  
Jonathan D. Schertzer

Skeletal muscle is the major tissue for postprandial glucose disposal. Facilitated glucose uptake into muscle fibers is mediated by increases in surface membrane levels of the glucose transporter GLUT4 via insulin- and/or muscle contraction-mediated GLUT4 translocation. However, the regulatory mechanisms controlling GLUT4 translocation in skeletal muscle have been difficult to characterize at the cell biology level due to muscle tissue complexity. Muscle cell culture models have improved our understanding of GLUT4 translocation and glucose transport regulation, but in vitro muscle models lack many of the characteristics of mature muscle fibers. Thus, the molecular and cellular details of GLUT4 translocation in mature skeletal muscle are deficient. The objective of this review is to highlight how advances in recent experimental approaches translate into an enhanced understanding of the regulation of GLUT4 translocation and glucose transport in mature skeletal muscle.


2021 ◽  
Author(s):  
Christian de Wendt ◽  
Lena Espelage ◽  
Samaneh Eickelschulte ◽  
Christian Springer ◽  
Laura Toska ◽  
...  

The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4, both substrates for the AMP-activated protein kinase AMPK, play important roles in exercise metabolism and contraction-dependent translocation of the glucose transporter GLUT4 in skeletal muscle. However, the specific contribution of each RabGAP in contraction signaling is mostly unknown. In this study, we investigated the cooperative AMPK/RabGAP signaling axis in the metabolic response to exercise/contraction using a novel mouse model deficient in active skeletal muscle AMPK, combined with knockout of either <i>Tbc1d1</i>, <i>Tbc1d4</i> or both RabGAPs. AMPK-deficiency in muscle reduced treadmill exercise performance. Additional deletion of <i>Tbc1d1</i> but not <i>Tbc1d4 </i>resulted in further decrease in exercise capacity. In oxidative <i>Soleus</i> muscle, AMPK deficiency reduced contraction-mediated glucose uptake and deletion of each or both RabGAPs had no further effect. In contrast, in glycolytic <i>EDL</i> muscle, AMPK deficiency reduced contraction-stimulated glucose uptake and deletion of <i>Tbc1d1 </i>but not <i>Tbc1d4 </i>led to a further decrease. Importantly, skeletal muscle deficient in AMPK and both RabGAPs still exhibited residual contraction-mediated glucose uptake, which was completely abolished by inhibition of the GTPase <i>Rac1</i>. Our results demonstrate a novel mechanistic link between glucose transport and <a></a><a>the GTPase signaling framework in skeletal muscle in response to contraction.</a>


2021 ◽  
Author(s):  
Christian de Wendt ◽  
Lena Espelage ◽  
Samaneh Eickelschulte ◽  
Christian Springer ◽  
Laura Toska ◽  
...  

The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4, both substrates for the AMP-activated protein kinase AMPK, play important roles in exercise metabolism and contraction-dependent translocation of the glucose transporter GLUT4 in skeletal muscle. However, the specific contribution of each RabGAP in contraction signaling is mostly unknown. In this study, we investigated the cooperative AMPK/RabGAP signaling axis in the metabolic response to exercise/contraction using a novel mouse model deficient in active skeletal muscle AMPK, combined with knockout of either <i>Tbc1d1</i>, <i>Tbc1d4</i> or both RabGAPs. AMPK-deficiency in muscle reduced treadmill exercise performance. Additional deletion of <i>Tbc1d1</i> but not <i>Tbc1d4 </i>resulted in further decrease in exercise capacity. In oxidative <i>Soleus</i> muscle, AMPK deficiency reduced contraction-mediated glucose uptake and deletion of each or both RabGAPs had no further effect. In contrast, in glycolytic <i>EDL</i> muscle, AMPK deficiency reduced contraction-stimulated glucose uptake and deletion of <i>Tbc1d1 </i>but not <i>Tbc1d4 </i>led to a further decrease. Importantly, skeletal muscle deficient in AMPK and both RabGAPs still exhibited residual contraction-mediated glucose uptake, which was completely abolished by inhibition of the GTPase <i>Rac1</i>. Our results demonstrate a novel mechanistic link between glucose transport and <a></a><a>the GTPase signaling framework in skeletal muscle in response to contraction.</a>


1987 ◽  
Vol 252 (2) ◽  
pp. E248-E254
Author(s):  
T. Gremeaux ◽  
J. F. Tanti ◽  
E. Van Obberghen ◽  
Y. Le Marchand-Brustel

Polymyxin B (PMB), a cyclic decapeptide antibiotic, inhibits the hypoglycemic effect of insulin in vivo. To elucidate the mechanism of PMB action, we have studied its effect in vitro on insulin-stimulated pathways in the mouse skeletal muscle. PMB, added to the incubation mixture, specifically inhibited insulin-stimulated 2-deoxyglucose transport and alpha-aminoisobutyric acid uptake in the isolated soleus muscle but did not affect the basal rates of transport (measured in the absence of insulin). PMB did not alter insulin binding and hexokinase activity. PMB effect was observed at all deoxyglucose concentrations tested, and PMB was also able to inhibit vanadate-stimulated glucose transport. By contrast, insulin activation of glycogen synthase was not prevented by PMB. Basal and maximally insulin-stimulated insulin receptor tyrosine kinase activity, tested in a cell-free system, was similar for both autophosphorylation and phosphorylation of exogenous substrates in the absence or in the presence of PMB. Furthermore, the insulin sensitivity of the kinase was increased in the presence of PMB. Our results suggest that the anti-insulin effect of PMB observed in vivo is due to an inhibition of insulin-stimulated glucose transport in the skeletal muscle perhaps through a specific blockade of the insulin-induced translocation of the glucose carriers.


2020 ◽  
Vol 99 (8) ◽  
pp. 977-986
Author(s):  
H. Ida-Yonemochi ◽  
K. Otsu ◽  
H. Harada ◽  
H. Ohshima

Glucose is an essential source of energy for mammalian cells and is transported into the cells by glucose transporters. There are 2 types of glucose transporters: one is a passive glucose transporter, GLUT ( SLC2A), and the other is a sodium-dependent active glucose transporter, SGLT ( SLC5A). We previously reported that the expression of GLUTs during tooth development is precisely and spatiotemporally controlled and that the glucose uptake mediated by GLUT1 plays a crucial role in early tooth morphogenesis and tooth size determination. This study aimed to clarify the localization and roles of SGLT1 and SGLT2 in murine ameloblast differentiation by using immunohistochemistry, immunoelectron microscopy, an in vitro tooth organ culture experiment, and in vivo administration of an inhibitor of SGLT1/2, phloridzin. SGLT1, which has high affinity with glucose, was immunolocalized in the early secretory ameloblasts and the ruffle-ended ameloblasts in the maturation stage. However, SGLT2, which has high glucose transport capacity, was observed in the stratum intermedium, papillary layer, and ameloblasts at the maturation stage and colocalized with Na+-K+-ATPase. The inhibition of SGLT1/2 by phloridzin in the tooth germs induced the disturbance of ameloblast differentiation and enamel matrix formation both in vitro (organ culture) and in vivo (mouse model). The expression of SGLT1 and SGLT2 was significantly upregulated in hypoxic conditions in the ameloblast-lineage cells. These findings suggest that the active glucose uptake mediated by SGLT1 and SGLT2 is strictly regulated and dependent on the intra- and extracellular microenvironments during tooth morphogenesis and that the appropriate passive and active glucose transport is an essential event in amelogenesis.


1998 ◽  
Vol 337 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Garret J. ETGEN ◽  
William J. ZAVADOSKI ◽  
Geoffrey D. HOLMAN ◽  
E. Michael GIBBS

Skeletal muscle glucose transport was examined in transgenic mice overexpressing the glucose transporter GLUT1 using both the isolated incubated-muscle preparation and the hind-limb perfusion technique. In the absence of insulin, 2-deoxy-d-glucose uptake was increased ∼ 3–8-fold in isolated fast-twitch muscles of GLUT1 transgenic mice compared with non-transgenic siblings. Similarly, basal glucose transport activity was increased ∼ 4–14-fold in perfused fast-twitch muscles of transgenic mice. In non-transgenic mice insulin accelerated glucose transport activity ∼ 2–3-fold in isolated muscles and to a much greater extent (∼ 7–20-fold) in perfused hind-limb preparations. The observed effect of insulin on glucose transport in transgenic muscle was similarly dependent upon the technique used for measurement, as insulin had no effect on isolated fast-twitch muscle from transgenic mice, but significantly enhanced glucose transport in perfused fast-twitch muscle from transgenic mice to ∼ 50–75% of the magnitude of the increase observed in non-transgenic mice. Cell-surface glucose transporter content was assessed via 2-N-4-(l-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(d -mannos-4-yloxy)-2-propylamine photolabelling methodology in both isolated and perfused extensor digitorum longus (EDL). Cell-surface GLUT1 was enhanced by as much as 70-fold in both isolated and perfused EDL of transgenic mice. Insulin did not alter cell-surface GLUT1 in either transgenic or non-transgenic mice. Basal levels of cell-surface GLUT4, measured in either isolated or perfused EDL, were similar in transgenic and non-transgenic mice. Interestingly, insulin enhanced cell-surface GLUT4 ∼ 2-fold in isolated EDL and ∼ 6-fold in perfused EDL of both transgenic and non-transgenic mice. In summary, these results reveal differences between isolated muscle and perfused hind-limb techniques, with the latter method showing a more robust responsiveness to insulin. Furthermore, the results demonstrate that muscle overexpressing GLUT1 has normal insulin-induced GLUT4 translocation and the ability to augment glucose-transport activity above the elevated basal rates.


2013 ◽  
Vol 24 (16) ◽  
pp. 2544-2557 ◽  
Author(s):  
L. Amanda Sadacca ◽  
Joanne Bruno ◽  
Jennifer Wen ◽  
Wenyong Xiong ◽  
Timothy E. McGraw

Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.


2004 ◽  
Vol 287 (1) ◽  
pp. E166-E173 ◽  
Author(s):  
Taro Toyoda ◽  
Tatsuya Hayashi ◽  
Licht Miyamoto ◽  
Shin Yonemitsu ◽  
Masako Nakano ◽  
...  

Recent studies have suggested that 5′AMP-activated protein kinase (AMPK) is activated in response to metabolic stresses, such as contraction, hypoxia, and the inhibition of oxidative phosphorylation, which leads to insulin-independent glucose transport in skeletal muscle. In the present study, we hypothesized that acute oxidative stress increases the rate of glucose transport via an AMPK-mediated mechanism. When rat epitrochlearis muscles were isolated and incubated in vitro in Krebs buffer containing the oxidative agent H2O2, AMPKα1 activity increased in a time- and dose-dependent manner, whereas AMPKα2 activity remained unchanged. The activation of AMPKα1 was associated with phosphorylation of AMPK Thr172, suggesting that an upstream kinase is involved in the activation process. H2O2-induced AMPKα1 activation was blocked in the presence of the antioxidant N-acetyl-l-cysteine (NAC), and H2O2 significantly increased the ratio of oxidized glutathione to glutathione (GSSG/GSH) concentrations, a sensitive marker of oxidative stress. H2O2 did not cause an increase in the conventional parameters of AMPK activation, such as AMP and AMP/ATP. H2O2 increased 3- O-methyl-d-glucose transport, and this increase was partially, but significantly, blocked in the presence of NAC. Results were similar when the muscles were incubated in a superoxide-generating system using hypoxanthine and xanthine oxidase. Taken together, our data suggest that acute oxidative stress activates AMPKα1 in skeletal muscle via an AMP-independent mechanism and leads to an increase in the rate of glucose transport, at least in part, via an AMPKα1-mediated mechanism.


1988 ◽  
Vol 64 (6) ◽  
pp. 2329-2332 ◽  
Author(s):  
S. H. Constable ◽  
R. J. Favier ◽  
G. D. Cartee ◽  
D. A. Young ◽  
J. O. Holloszy

Exercise increases permeability of muscle to glucose. Normally, the effects of exercise and a maximal insulin stimulus on glucose transport are additive. However, the combined effect on rat epitrochlearis muscle permeability to 3-O-methylglucose (3-MG) of a maximal insulin stimulus followed by in vitro contractile activity of 1.24 +/- 0.06 mumol.10 min-1.ml intracellular water-1 was no greater than that of either stimulus alone. We found that this absence of an additive effect was caused by prolonged exposure to an unphysiologically high insulin concentration (20,000 microU/ml for 60 min), which, in addition to stimulating glucose transport, appears to prevent further increases in permeability to glucose. When the treatments were reversed and muscles were first stimulated to contract and then incubated with 20,000 microU/ml insulin, 3-MG uptake (mumol.10 min-1.ml intracellular water-1) increased from a control value of 0.26 +/- 0.03 to 1.80 +/- 0.15, compared with 1.04 +/- 0.06 for contractile activity alone, 1.21 +/- 0.08 for insulin, and 1.88 +/- 0.11 for exercise (swimming) plus insulin. Swimming plus in vitro contractile activity did not have a greater effect than contractile activity alone. Our results provide evidence that 1) the effect of exercise on muscle permeability to glucose is mediated solely by a process associated with contractile activity, and 2) it is advisable to avoid the use of unphysiologically high insulin concentrations in studies designed to elucidate in vivo actions of insulin.


Sign in / Sign up

Export Citation Format

Share Document