glucose transporter proteins
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 2)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Vol 10 (24) ◽  
pp. 5833
Author(s):  
Paweł Jan Stanirowski ◽  
Dariusz Szukiewicz ◽  
Agata Majewska ◽  
Mateusz Wątroba ◽  
Michał Pyzlak ◽  
...  

Placental transfer of glucose constitutes one of the major determinants of the intrauterine foetal growth. The objective of the present study was to evaluate the expression of glucose transporter proteins GLUT-1, GLUT-3, GLUT-8 and GLUT-12 in the placenta of macrosomic, small-for-gestational-age (SGA) and growth-restricted foetuses (FGR). A total of 70 placental tissue samples were collected from women who delivered macrosomic ≥4000 g (n = 26), SGA (n = 11), growth-restricted (n = 13) and healthy control neonates (n = 20). Computer-assisted quantitative morphometry of stained placental sections was performed to determine the expression of selected GLUT proteins. Immunohistochemical staining identified the presence of all glucose transporters in the placental tissue. Quantitative morphometric analysis performed for the vascular density-matched placental samples revealed a significant decrease in GLUT-1 and increase in GLUT-3 protein expression in pregnancies complicated by FGR as compared to other groups (p < 0.05). In addition, expression of GLUT-8 was significantly decreased among SGA foetuses (p < 0.05). No significant differences in GLUTs expression were observed in women delivering macrosomic neonates. In the SGA group foetal birth weight (FBW) was negatively correlated with GLUT-3 (rho = −0.59, p < 0.05) and positively with GLUT-12 (rho = 0.616, p < 0.05) placental expression. In addition, a positive correlation between FBW and GLUT-12 expression in the control group (rho = 0.536, p < 0.05) was noted. In placentas derived from FGR-complicated pregnancies the expression of two major glucose transporters GLUT-1 and GLUT-3 is altered. On the contrary, idiopathic foetal macrosomia is not associated with changes in the placental expression of GLUT-1, GLUT-3, GLUT-8 and GLUT-12 proteins.


2018 ◽  
Vol 08 (04) ◽  
pp. 040-042
Author(s):  
Saritha G. ◽  
Bhavani S.

AbstractGlucose serves as the major energy sources for developing brain. In the resting state, the adult brain can consume up to 25% of the body's total glucose supply, while in infants and children it can use as much as 80%. Glucose entry into brain occurs via glucose transporter proteins GLUTs). They are five GLUTs protein. Out of five GLUTs 1 and GLUTS 3 are located in brain, with GLUTs-1 found in blood brain barrier and choroid plexus and GLUTs-3 found in neurons. Glucose transporter type 1 deficiency syndrome is an impaired glucose transport into the brain as the result of a mutation of the SLC2A1 gene leads to development of a metabolic encephalopathy of developing brain.


2018 ◽  
Vol 42 (2) ◽  
pp. 209-217 ◽  
Author(s):  
Paweł Jan Stanirowski ◽  
Dariusz Szukiewicz ◽  
Monika Pazura-Turowska ◽  
Włodzimierz Sawicki ◽  
Krzysztof Cendrowski

Author(s):  
Mary Shannon Byers ◽  
Christianna Howard ◽  
Xiaofei Wang

The GLUT members belong to a family of glucose transporter proteins that facilitate glucose transport across the cell membrane. The mammalian GLUT family consists of thirteen members (GLUTs 1-12 and HMIT). Humans have a recently duplicated GLUT member, GLUT14. Avians express the majority of GLUT members. The arrangement of multiple GLUTs across all somatic tissues signifies the important role of glucose across all organisms. Defects in glucose transport have been linked to metabolic disorders, insulin resistance and diabetes. Despite the essential importance of these transporters, our knowledge regarding GLUT members in avians is fragmented. It has been clear that there are no chicken orthologs of mammalian GLUT4 and GLUT7. Our examination of GLUT members in the chicken revealed that some chicken GLUT members do not have corresponding orthologs in mammals. We review the information regarding GLUT orthologs and their function and expression in mammals and birds, with emphasis on chickens and humans.


2016 ◽  
Vol 2 (6) ◽  
pp. 318 ◽  
Author(s):  
Pengfei Zhao ◽  
Weiwei Wang ◽  
Li Yang ◽  
Alatan Gaole

<p>Glucose transporter proteins are involved in many physiological and biochemical processes. In particular, the high expressions of sodium-glucose cotransporter and glucose transporter proteins in tumor cells show that these two transporters play a key role in tumor cell metabolism. Studying the crystal structure and conformation of human glucose transporter proteins has enabled the development of drugs based on specific binding sites, opening up a new path towards more effective cancer treatments. This mini review serves to summarize our existing understanding of the metabolic pathways of tumor cells, focusing on the roles of glucose transporter proteins.</p>


2014 ◽  
Vol 38 (4) ◽  
pp. 308-314 ◽  
Author(s):  
Kristin I. Stanford ◽  
Laurie J. Goodyear

Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial function, increases mitochondrial biogenesis, and increases the expression of glucose transporter proteins and numerous metabolic genes. This review focuses on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle.


2014 ◽  
Vol 42 (5) ◽  
pp. 1396-1400 ◽  
Author(s):  
Dimitrios Kioumourtzoglou ◽  
Jessica B.A. Sadler ◽  
Hannah L. Black ◽  
Rebecca Berends ◽  
Cassie Wellburn ◽  
...  

Insulin plays a fundamental role in whole-body glucose homeostasis. Central to this is the hormone's ability to rapidly stimulate the rate of glucose transport into adipocytes and muscle cells [1]. Upon binding its receptor, insulin stimulates an intracellular signalling cascade that culminates in redistribution of glucose transporter proteins, specifically the GLUT4 isoform, from intracellular stores to the plasma membrane, a process termed ‘translocation’ [1,2]. This is an example of regulated membrane trafficking [3], a process that also underpins other aspects of physiology in a number of specialized cell types, for example neurotransmission in brain/neurons and release of hormone-containing vesicles from specialized secretory cells such as those found in pancreatic islets. These processes invoke a number of intriguing biological questions as follows. How is the machinery involved in these membrane trafficking events mobilized in response to a stimulus? How do the signalling pathways that detect the external stimulus interface with the trafficking machinery? Recent studies of insulin-stimulated GLUT4 translocation offer insight into such questions. In the present paper, we have reviewed these studies and draw parallels with other regulated trafficking systems.


Sign in / Sign up

Export Citation Format

Share Document