Reliability assessment in highway bridge design

2002 ◽  
Vol 29 (5) ◽  
pp. 799-805 ◽  
Author(s):  
M S Cheung ◽  
W C Li

The current practice of highway bridge design in Canada is based on limit states design. Ideally, by means of the properly calibrated load and resistance factors specified in the applicable design code, limit states design will yield a consistent and uniform safety level for all designed bridge structures. Some factors neglected in the standard design procedures, however, may have unexpected effects on the reliability of a particular design. In this case, to follow a design code exactly may still lead to a certain degree of underdesign or overdesign. Therefore, the reliability assessment is recommended for each particular design, and a simulation-based approach for this assessment is proposed in this study. Examples are presented to support the afore-mentioned recommendation.Key words: highway bridges, reliability, design code, simulation, finite strip method.

1984 ◽  
Vol 11 (4) ◽  
pp. 824-832
Author(s):  
R. A. Dorton

The Ontario Highway Bridge Design Code was first issued in 1979 and has since been used for the design and evaluation of most bridges in Ontario. The code is in metric SI units, written in a limit states format, and calibrated to a target safety index value of 3.5. It has produced bridges with a more consistent safety level and capable of carrying design live loads twice those previously prescribed. Feedback from users was obtained and their concerns considered in formulating the provisions of the seeond edition in 1983. New bridge codes can be written in a short time and implemented most readily within a relatively small jurisdiction having control of all highways, bridges, and vehicles. Communications between the writers and potential users are important throughout the preparation and implementation phases. It is essential that a commentary volume be issued with a code to ensure correct understanding and interpretation of new provisions. Computer programs should be available, incorporating the code technology before the use of a new code becomes mandatory. Future code needs and likely areas of new development are outlined in the paper. Key words: calibration, codes, computer systems, highway bridges, loadings, safety, structures.


2016 ◽  
Vol 53 (2) ◽  
pp. 236-251 ◽  
Author(s):  
Gordon A. Fenton ◽  
Farzaneh Naghibi ◽  
David Dundas ◽  
Richard J. Bathurst ◽  
D.V. Griffiths

Canada has two national civil codes of practice that include geotechnical design provisions: the National Building Code of Canada and the Canadian Highway Bridge Design Code. For structural designs, both of these codes have been employing a load and resistance factor format embedded within a limit states design framework since the mid-1970s. Unfortunately, limit states design in geotechnical engineering has been lagging well behind that in structural engineering for the simple fact that the ground is by far the most variable (and hence uncertain) of engineering materials. Although the first implementation of a geotechnical limit states design code appeared in Denmark in 1956, it was not until 1979 that the concept began to appear in Canadian design codes, i.e., in the Ontario Highway Bridge Design Code, which later became the Canadian Highway Bridge Design Code (CHBDC). The geotechnical design provisions in the CHBDC have evolved significantly since their inception in 1979. This paper describes the latest advances appearing in the CHBDC along with the steps taken to calibrate its recent geotechnical resistance and consequence factors.


2020 ◽  
Vol 47 (1) ◽  
pp. 88-95
Author(s):  
B. Algohi ◽  
B. Bakht ◽  
H. Khalid ◽  
A. Mufti ◽  
J. Regehr

Three highway bridges in the Canadian province of Manitoba are being monitored continuously not only for their long-term performance but also for bridge weighing-in-motion (BWIM). Data collected for the BWIM study has led to some observations that have far-reaching consequences about the design and evaluation loads for highway bridges. This paper presents the well-known concept of equivalent base length, Bm, as a useful tool for comparing trucks with different axle weight and spacing configurations as they influence load effects in all bridges. It is discussed that the statistics of gross vehicle weights (GVWs), W, collected over a one-month period is not significantly different from that for the GVW data collected over a longer period. A rational method concludes that the value of W for the CL-W Truck, the design live load specified by the Canadian Highway Bridge Design Code, is 555 kN for Manitoba. The observed truck data in Manitoba presented on the W–Bm space is found to be similar to that collected in the Canadian province of Ontario more than four decades ago. It was also found that the multi-presence factors, accounting for the presence of side-by-side trucks in two-lane bridges, specified in North American bridge design and evaluation codes are somewhat conservative.


1984 ◽  
Vol 11 (4) ◽  
pp. 760-770 ◽  
Author(s):  
Hid N. Grouni ◽  
Andrzej S. Nowak

The paper summarizes the calibration procedure used to calculate load and resistance factors for the Ontario Bridge Design Code 1983 edition. The limit states considered include serviceability and ultimate limit states during service and in construction. The acceptance criterion is closeness to a predetermined target safety level. Safety is measured in terms of a reliability index. The results of calibration are discussed for composite steel–concrete girders, pretensioned concrete girders, post-tensioned concrete decks, and timber decks. The analysis of construction design criteria is demonstrated on segmental bridges. Key words: code calibration, bridges, reliability index, load and resistance factors, limit states.


2010 ◽  
Vol 163-167 ◽  
pp. 3324-3327 ◽  
Author(s):  
Kun Li

The coming national specification for steel highway bridge will adopt the design method of probability limit state based on the structure reliability theory. Then the statistical parameters of loads and resistance play a key role in this method. Based on the extensive survey and investigation on site, the parameters of resistance are calculated in the study. In the work, three aspects of resistance’s uncertainty which are the uncertainty of materials properties, geometric parameters of members and calculation model are analyzed respectively. Then, the statistical parameters of five typical members of two commonly used steels—Q235q and Q345qD—in steel highway bridges are calculated. The recommended statistical parameters of resistance of steel highway bridge can be a reference for the new specification.


1998 ◽  
Vol 25 (4) ◽  
pp. 797-801 ◽  
Author(s):  
Leslie G Jaeger ◽  
Baidar Bakht ◽  
Gamil Tadros

In order to calculate prestress losses in the transverse prestressing of voided concrete slabs, it is sometimes convenient to estimate the thickness of an equivalent solid slab. The Ontario Highway Bridge Design Code, as well as the forthcoming Canadian Highway Bridge Design Code, specifies a simple expression for calculating this equivalent thickness. This expression is reviewed in this technical note, and a simple alternative expression, believed to be more accurate, is proposed, along with its derivation. It is shown that the equivalent solid slab thickness obtained from consideration of in-plane forces is also applicable to transverse shear deformations, provided that the usual approximations of elementary strength of materials are used in both cases.Key words: axial stiffness, equivalent area, shear deformation, transverse prestressing, voided slab, slab.


1986 ◽  
Vol 13 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Andrzej S. Nowak ◽  
Raymond J. Taylor

The new Ontario Highway Bridge Design Code (OHBDC) is based on limit states theory and therefore uses a load and resistance factor format. This paper deals with the development of the basis for the timber bridge design provisions (OHBDC). Three structural systems are considered: sawn timber stringers, laminated nailed decks, and prestressed laminated decks. The latter system has been successfully used in Ontario for the last 7 years.The acceptance criterion in calculation of load and resistance factors is structural reliability. It is required that bridges designed using the new code must have a reliability equal to or greater than a preselected target value. Reliability is measured in terms of the reliability index. The safety analysis is performed for a structural system rather than for individual members. The live load model was developed on the basis of available truck survey data. Material properties are based on extensive in-grade test results. Numerical examples are included to demonstrate the presented approach. Key words: bridge deck, design code, prestressed timber, reliability, reliability index, stringers, structural safety, timber bridges.


Sign in / Sign up

Export Citation Format

Share Document