steel ratio
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 26)

H-INDEX

6
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 329
Author(s):  
Jun Wang ◽  
Xinran Wang ◽  
Yuxin Duan ◽  
Yu Su ◽  
Xinyu Yi

At present, the existing standards (AISC360-16, EN1994-1-1:2004, and JGJ138-2016) lack relevant provisions for steel-reinforced concrete (SRC) composite columns with high-strength steel. To investigate the axial compressive mechanical performance of short high-strength steel-reinforced concrete (HSSRC) columns, the axial load test was conducted on 12 short composite columns with high-strength steel and ordinary steel. The influences of steel strength, steel ratio, and the section form of steel on the failure modes, bearing capacity, and ductility of the specimens were studied. Afterward, the experimental data were compared with the existing calculation results. The results show: compared with the specimens with Q235 steel, the bearing capacity of the specimens with Q460 steel increases by 7.8–15.3%, the bearing capacity of the specimens with Q690 steel increases by 13.2–24.1%, but the ductility coefficient increases by 15.2–202.4%; with the increase of steel ratio, the bearing capacity and ductility of specimens are significantly improved. A change of the steel cross-section could influence the ductility of SRC columns more than their bearing capacity. Moreover, the calculation results show that present standards could not predict the bearing capacity of HSSRC columns. Therefore, a modified method for determining the effective strength of steel equipped in HSSRC columns was proposed. The results of the ABAQUS simulation also showed that the addition of steel fibers could significantly improve the bearing capacity of Q690 HSSRC columns. The research results provide a reference for engineering practices.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 639
Author(s):  
Jun Wang ◽  
Yuxin Duan ◽  
Wenze Sun ◽  
Xinyu Yi

This paper investigates the eccentric compression performance of high-strength steel reinforced concrete (SRC) columns. In addition, the feasibility of the calculation codes used for the load-carrying capacity of these columns is verified by eccentric compression tests on 10 high-strength SRC columns with Q460 and Q690 steels and two normal SRC columns with Q235 steel. Moreover, the influence of the steel strength, relative eccentricity, steel ratio, and stirrup spacing on the bearing capacity and ductility of the specimens is analyzed. It was found that the bearing capacity and ductility of the specimens significantly increases when the steel strength increases from 276.5 MPa to 774.2 MPa; the bearing capacity of the Q690 SRC column is slightly higher than that of the Q460 SRC column. In addition, the ductility coefficient of the Q690 SRC columns is significantly higher than that of the Q460 SRC columns. It was also found that increasing the eccentricity and steel ratio can improve the ductility of the specimens and the smaller stirrup spacing can enlarge the contribution of Q690 steel under the ultimate bearing capacity. It is demonstrated that Eurocode 4-2004 and AISC360-16 codes significantly underestimate the test results. In contrast, JGJ138-2016 slightly underestimates the test results when the relative eccentricity is 0.2 but overestimates the test results when the relative eccentricity is 0.6. Furthermore, in order to maximize the contribution of Q690 steel under ultimate bearing capacity, the expanded parameter analysis is carried out using a finite element model. Following the analysis results, the suggestions for designing high-strength SRC columns under eccentric load are provided.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2328
Author(s):  
Yingchun Liu ◽  
Ziwen He ◽  
Wenfu Zhang ◽  
Jing Ji ◽  
Yuchen Liu ◽  
...  

Tubular flange composite beams are increasingly applied in modern bridge structures. In order to investigate the overall stability behavior of doubly symmetric tubular flange composite beams with lateral bracing under concentrated load, the analysis of elastic lateral-torsional buckling is conducted by the energy variation method. The analytical solution of critical moment of doubly symmetric tubular flange composite beams with lateral bracing is obtained. Meanwhile, the simplified calculation formula of critical moment is fitted by 1stOpt software based on 26,000 groups of data, and the accuracy is verified by the finite element method. It is found that, the critical moment rises obviously with increasing lateral bracing stiffness, and adding lateral bracing to doubly symmetric tubular flange composite beams is beneficial to improve the overall stability in engineering practice. Finally, the influence of several parameters including concrete strength, span, steel ratio of flange and height-thickness ratio of web are studied. The results show that the concrete strength and the web height-thickness ratio have a weak influence on critical moment of elastic lateral-torsional buckling, while the influence of span-depth ratio and flange steel ratio is very significant.


Author(s):  
Rasha A Waheeb

The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio, compressed reinforcing steel ratio,reinforcing steel size, corner joint shape on the strength of reinforcedconcrete Fc' and delve into it for the most accurate details and concreteconnections about the behavior and resistance of the corner joint ofreinforced concrete, Depending on the available studies and sources inaddition to our study, we concluded that each of these effects had a clearrole in the behavior and resistance of the corner joint of reinforced concreteunder the influence of the negative moment and yield stress. A studyof the types of faults that can be reinforced angle joints obtains detailsand conditions of crushing that are almost identical for all types of steelreinforcement details and the basic requirements for the acceptable behaviorof reinforced concrete joints in the installations and the efficiency of thejoint and this may help us to prepare for disasters, whether natural or other,as happens with tremors The floor and failure that may occur due to wrongdesigns or old buildings and the possibility of using those connections totreat those joints and sections in reinforced or unarmed concrete facilitiesto preserve the safety of humans and buildings from sudden disasters andreduce and reduce risks, as well as qualitative control over the productionof concrete connections and sections free from defects to the extreme.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255603
Author(s):  
Ni Zhang ◽  
Chenyang Zheng ◽  
Qingwei Sun

The reinforced concrete-filled steel tube (RCFST) column solves several of the problems of the concrete-filled steel tube (CFST) column in practical engineering applications. Moreover, RCFST has a simple joint structure, high bearing capacity, good ductility, and superior fire resistance. From a structural safety perspective, designers prioritize the creep performance of CFST members in structural design. Therefore, the creep behavior of RCFST columns should be thoroughly investigated in practical engineering design. To study the influence of the creep behavior of RCFST columns under axial compression, this work analyzed the mechanical behavior of composite columns based on their mechanical characteristics under axial compression and established a creep formula suitable for RCFST columns under axial compression. A creep analysis program was also developed to obtain the creep strain–time curve, and its correctness was verified by existing tests. On this basis, the effects of the main design parameters, such as the stress level, steel ratio, and reinforcement ratio, on the creep behavior were determined and analyzed. The creep of the tested composite columns increased rapidly in the early stages (28 days) of load action; the growth rate was relatively low after 28 days and tended to stabilize after approximately six months. The stress level had the greatest influence on the creep of RCFST columns under axial compression, followed by the steel ratio. The influence of the reinforcement ratio on the creep behavior was less. The results of this study can provide a reference for engineering practice.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zongping Chen ◽  
Fan Ning ◽  
Linlin Mo

The square steel tube component has a beautiful appearance, simple joint connection, and it is widely available. However, the uneven distribution of effective constraints in the cross-section of a square steel tube hinders its application. A novel concrete-filled square steel tubular column was tested under axial compression. There were 11 specimens [10 concrete-filled square steel tube columns reinforced with rhombic stirrups with 90-degree internal angle (SSSC specimens) and 1 concrete-filled square steel tube column (SC specimen)]. The load-displacement curves, the law of failure process, failure mode, mechanism analysis, energy consumption, ductility, and stiffness degradation were described, we then investigated the influence of stirrup diameter, stirrup side length, stirrup spacing, steel tube thickness, aspect ratio, and steel ratio on the mechanical properties of the specimens. The results show that the failure process of the SSSC specimens was basically the same. The ultimate failure mode of the specimens with an aspect ratio of 4 was local buckling failure. The specimens with an aspect ratio of 5 and 6 failed due to bending failure in the plastic stage. The steel tube bulged out in different degrees in most of the debonding areas. The longitudinal bars also produced outward bending deformation in the larger bulging area of the steel tube. Some of the stirrups were broken in the later stage of loading. The characteristics of load-displacement curve changed with the changing of stirrup spacing. The strength of longitudinal constraint had an obvious influence on the bearing capacity. In a certain range of steel ratio (ρs = 8.97% ∼ 9.05%), the weakening of the lateral restraint of the stirrup cage had a greater adverse effect on the bearing capacity than the weakening of the effective restraint of the corner. In a certain range of steel ratio (ρs = 8.97% ∼ 9.49%), strengthening the effective corner constraint of stirrups improved the stiffness of the specimen, however, the ductility performance was reduced. The opposite was true for strengthening the lateral constraint of the stirrup cage.


2021 ◽  
Vol 11 (10) ◽  
pp. 4512
Author(s):  
Myunghwan Lim ◽  
Changhee Lee

The use of high-tension bars to strengthen flexural members is gaining increasing interest. However, the applicability of current standards to such bars is uncertain, because there may not be a definite yield strength and it may be unclear whether the tensile or compressive failure mode dominates. Determining the balanced–destruction steel ratio is particularly difficult. We measure the bending behaviour of flexural members containing high-tension bars with different yield strengths and tensile steel ratios. We conclude that the maximum-steel-ratio regulation and nominal -strength equation in the current standard remain applicable.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2568
Author(s):  
Xuetao Lyu ◽  
Liqiang Zhang ◽  
Tong Zhang ◽  
Ben Li ◽  
Huan Li ◽  
...  

This paper adopts the method of steel tube wall thickness and strength reduction to simulate corrosion damage. The numerical model of the square concrete-filled steel tube long column (SCFST-LC) under eccentric compression after acid rain corrosion is established in the finite element software, ABAQUS. The reliability and accuracy of the model are verified by comparing it with published relevant experimental results. The failure mode, load-deformation curve, and ultimate compressive load were analysed. Following that, the impacts of section size, yield strength of the steel tube, axial compressive strength of concrete, steel ratio, slenderness ratio, and load eccentricity on its ultimate compressive load are comprehensively investigated. The results demonstrate that the ultimate compressive load of the SCFST-LC decreases significantly with the increase in corrosion rate. The corrosion rate increases from 10 to 40%, and the ultimate bearing capacity decreases by 37.6%. Its ultimate bearing capacity can be enhanced due to the increase in section size, material strength, and steel ratio. In contrast, the ascending slenderness ratio and load eccentricity has harmful effects on the ultimate compressive load of the specimens. Finally, a simplified formula for the axial compressive load of the SCFST-LC under eccentric compression after acid rain corrosion is proposed. The calculation accuracy is high and the deviation of the results is basically within 15%, which is in good agreement with the numerical simulation results.


2021 ◽  
Vol 8 ◽  
Author(s):  
Deren Lu ◽  
Yongzhi Gong ◽  
Faxing Ding ◽  
Liping Wang ◽  
Chao Deng ◽  
...  

This paper presents an experimental and numerical study on large dimension concrete-filled square low steel ratio steel tubular (CFST) stub columns under axial loading. Four specimens were designed to investigate the effects of steel ratio on the confinement effect of square CFST stub columns with a low steel ratio. ABAQUS was used to establish 3D finite element (FE) models for simulation of square CFST stub columns with a low steel ratio under axial loading. Furthermore, based on the experimental verification, the definition of the confinement index (ϕ = fsAs/(fcAc)) was discussed and the effect of the grade of concrete and steel tube was also investigated. With the same cross-sectional dimensions, the confinement effect of the square CFST stub columns with a low steel ratio (less than 0.05) was better than the others. The stub columns with the yield strength of steel tube fs = 235 MPa (345, 420 MPa) and compressive cubic strength of concrete fcu = 40 MPa (60, 80 MPa) can give fully demonstrate the material performance and reflect the better confinement effect. Based on the experimental results and FE modeling, a practical calculation formula for the ultimate load-carrying capacity of square CFST stub columns with a low steel ratio was proposed. The formula calculation results presented in this paper show good agreement with the experimental results. Compared with the existing formulas, the proposed formula has better precision.


Sign in / Sign up

Export Citation Format

Share Document