Pendulum impacts into concrete bridge barriers reinforced with glass fibre reinforced polymer composite bars

2004 ◽  
Vol 31 (4) ◽  
pp. 539-552 ◽  
Author(s):  
Ehab El-Salakawy ◽  
Radhouane Masmoudi ◽  
Brahim Benmokrane ◽  
Frédéric Brière ◽  
Gérard Desgagné

This paper presents the results of a pendulum impact test that was carried out on full-scale types PL-2 and PL-3 concrete bridge barriers reinforced with glass fibre reinforced polymer (GFRP) bars. A new corrosion-free connection between the barrier wall and the slab using GFRP bent bars was investigated. For comparison purposes, the impact test was also performed on identical concrete barriers reinforced with conventional steel. A total of eight full-scale 10-m-long barrier prototypes were constructed and tested. The tests included four PL-2 and four PL-3 prototypes. For each type of barrier, two prototypes were reinforced with GFRP sand-coated bars and the other two were reinforced with steel bars. Pendulum crash tests using a 3.0-t pear-shaped iron ball were performed under the same conditions for each type of barrier. The behaviour of the barriers was evaluated in terms of cracking pattern, crack width, and strains in reinforcing bars. The results of this investigation led to the conclusion that the behaviour of PL-2 and PL-3 concrete bridge barriers reinforced with GFRP bars is very similar to that of their counterparts reinforced with conventional steel in terms of cracking, energy absorption, and strength.Key words: concrete bridges, bridge barriers, glass FRP bars, impact, pendulum crash test.

2014 ◽  
Vol 564 ◽  
pp. 428-433 ◽  
Author(s):  
S.N.A. Safri ◽  
Mohamed Thariq Hameed Sultan ◽  
N. Razali ◽  
Shahnor Basri ◽  
Noorfaizal Yidris ◽  
...  

The purpose of this work is to study the best number of layer with the higher impact energy using Glass Fibre Reinforced Polymer (GFRP). The number of layers used in this study was 25, 33, 41, and 49. The impact test was performed using Single Stage Gas Gun (SSGG) for each layers given above with different bullets such as blunt, hemispherical and conical bullets. The gas gun pressure was set to 5, 10, 15 and 20 bar. All of the signals captured from the impact test were recorded using a ballistic data acquisition system. The correlation between the impact energy in terms of number of layer and type of bullet from this test are presented and discussed. It can be summarise that as the number of layer increases, impact energy also increases. In addition, from the results, it was observed that by using different types of bullets (blunt, hemispherical, conical), there is only a slight difference in values of energy absorbed by the specimen.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7398
Author(s):  
Mirosław Broniewicz ◽  
Filip Broniewicz ◽  
Elżbieta Broniewicz

Utility poles made of glass fibre-reinforced polymer (GFRP) are becoming increasingly common in European countries. Therefore, it is necessary to accurately examine their structural properties to ensure the integrity and safety of the poles. The purpose of this article is to compare the bending resistance of GFRP composite lighting columns obtained using European standard procedures with full-scale experimental tests. Several composite lighting columns were tested as part of the research study, and coupon tests were performed to assess the material properties required to calculate their bending resistance according to European Standard (EN) 40-3-3. The results obtained differed significantly. Furthermore, it was observed that the current standard rules for obtaining the resistance of GFRP poles based on the limit state method show a higher load capacity of the column in comparison to the capacity obtained from the tests.


2013 ◽  
Vol 40 (11) ◽  
pp. 1050-1059 ◽  
Author(s):  
Ehab A. Ahmed ◽  
Christian Dulude ◽  
Brahim Benmokrane

The behaviour of concrete bridge barriers reinforced with glass fibre-reinforced polymer (GFRP) bars has been investigated at the University of Sherbrooke in collaboration with the Ministry of Transportation of Quebec (MTQ) through a two-phase research project. This paper presents the test results of MTQ Type 311 barrier prototypes under static (Phase I) and pendulum impact (Phase II) loading conditions. The test program included two full-scale 2.6 m long barrier prototypes for laboratory testing under static loads (Phase I) and four full-scale 11 m long barrier prototypes for field impact tests (Phase II). The laboratory static tests included one prototype totally reinforced with GFRP bars and one totally reinforced with steel bars for comparison, whereas the pendulum impact tests included two replicas totally reinforced with GFRP bars and another two totally reinforced with conventional steel bars. The barrier walls of the six prototypes were provided with the same reinforcement amount of GFRP and steel bars (No. 20 GFRP @ 200 mm and 20M steel bars @ 200 mm). The performance of the GFRP-reinforced concrete (GFRP-RC) barriers was evaluated and compared with that of their steel-RC counterparts. The results of this investigation revealed that the behaviour of the GFRP-RC concrete bridge barriers of MTQ Type 311 is similar to their steel-RC counterparts.


This study presents the flexural behaviour of rectangular concrete beams reinforced with surface treated Glass Fibre Reinforced Polymer (GFRP), Grooved bars and Sand sprinkled reinforcing bars. Beams cast with standard mix of M30 grade concrete, with a reinforcement ratios of 0.73%, and compared with that of conventional steel reinforced beams. Totally five rectangular beams of size 125 mm x 250 mm x 3200 mm were cast. The flexural study was carried under static two point loading. The experimental prediction was focused on observation of ultimate load capacity, cracks propagation and crack widths and failure modes of beams. The results indicate that both type of GFRP reinforcements are at par with the conventional steel reinforcements.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4110
Author(s):  
Agnieszka Wiater ◽  
Tomasz Siwowski

The widespread use of glass fibre reinforced polymer (GFRP) bars in reinforced concrete (RC) elements has yet been limited due to the anisotropic and non-homogeneous material behaviour of GFRP. The material characteristics of GFRP bars from different manufacturers vary as a function of several factors. Several standards have developed various procedures to investigate the mechanical characteristics of GFRP bars, but universal methods to test different types and diameters of GFRP bars in tension have not been fully developed. Due to the lack of such a standardized test procedure, there are some doubts and gaps in terms of the behaviour of GFRP bars in tension, which has led to lack of reliable information on their tensile properties. The determination of tensile characteristics of GFRP bars, including the tensile strength, modulus of elasticity, and ultimate strain, according to various test standards, is the main subject of the paper. This paper reports test results for tensile characterization obtained on four types of GFRP bars from four manufacturers with six various diameters. Moreover, the study compares various test procedures according to seven standards to characterize the tensile properties of GFRP bars, to examine the proposed test procedures, and to reveal main differences.


Sign in / Sign up

Export Citation Format

Share Document