Prédiction de la charge ultime de colonnes mixtes constituées de tubes remplis de béton à haute résistance : étude comparative des codes de calcul

1999 ◽  
Vol 26 (4) ◽  
pp. 476-488 ◽  
Author(s):  
K Lahlou ◽  
M Lachemi

Columns are the preferred structural application of high and very high strength concrete. The confinement of this type of concrete in steel tubes presents definite advantages from both a technical and an economical perspective. However, the present design code provisions do not allow this type of material to be considered. In certain codes, the validity limits have recently been widened, but these limits remain below the present performance of high-strength concrete. The results of a large experimental program aiming at studying the behavior of concrete columns confined in steel tubes were used in order to compare predictions by different design methods, and thus verify their applicability beyond their conventional validity limits. Based on these experimental results, a new equation is proposed to predict the ultimate load of concrete columns confined in a steel tube.Key words: high-strength concrete, ultimate load, design codes, mixed columns, confinement, slenderness.[Journal translation]

2020 ◽  
Vol 982 ◽  
pp. 175-180
Author(s):  
Yi Liu ◽  
Yue Ting Yang ◽  
Jing Zeng ◽  
Ling Chen

An experimental investigation on square and circular high-strength concrete short columns confined with aramid fiber-reinforced polymer (AFRP) sheets was conducted in this study. Fiber Bragg grating sensors have been applied successfully in monitoring of the strains of the AFRP-confined square and circular concrete columns. The experimental results demonstrate that two types of axial force-strain curves were observed depending on the form of the column. Results show fiber Bragg grating sensors have good repeatability and the ultimate load of the circular concrete column is larger than that of the square concrete column. The interlaminar strains of AFRP and high-strength concrete have also been attained. It helps to analyze the constraint effect of the concrete column and compute the ultimate load of the square and circular concrete column.


2001 ◽  
Vol 17 (4) ◽  
pp. 679-695 ◽  
Author(s):  
Armen Martirossyan ◽  
Yan Xiao

This paper discusses the seismic performance of high-strength concrete columns. The research is a part of an ongoing comprehensive experimental program to investigate seismic design methods of high-strength concrete structures. The first stage of the program involved testing of fifteen high-strength concrete stub columns under concentric axial compression. The concrete compressive strength was about 69 MPa (10,000 psi). In addition, a large database including eighty-six similar tests conducted by other researchers was constructed, and stress-strain behavior of high-strength concrete was investigated. Based on the analysis, a stress-strain relationship for high-strength concrete columns was proposed. Secondly, six 1/3-1/2 scale high-strength concrete short columns were tested under combined axial load and cyclic shear, with double curvature condition. The primary experimental parameters included axial load ratio, longitudinal reinforcement ratio, and volumetric ratio of transverse reinforcement. The proposed stress-strain relationship was used in the analysis of the lateral force–displacement relationship for high-strength concrete columns. Moment-curvature analysis, based on proposed equivalent stress block approach, as well as plastic hinge mechanism, has been incorporated in this analytical tool. The analytical results agreed well with the primary load-deflection envelopes obtained from the tests.


2020 ◽  
Vol 10 (2) ◽  
pp. 642 ◽  
Author(s):  
Luís Bernardo ◽  
Sérgio Lopes ◽  
Mafalda Teixeira

This article describes an experimental program developed to study the influence of longitudinal prestress on the behaviour of high-strength concrete hollow beams under pure torsion. The pre-cracking, the post-cracking and the ultimate behaviour are analysed. Three tests were carried out on large hollow high-strength concrete beams with similar concrete strength. The variable studied was the level of longitudinal uniform prestress. Some important conclusions on different aspects of the beams’ behaviour are presented. These conclusions, considered important for the design of box bridges, include the influence of the level of prestress in the cracking and ultimate behaviour.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Zeng ◽  
Zhenkun Cui ◽  
Yunfeng Xiao ◽  
Siqian Jin ◽  
Yuanyuan Wu

This paper presents an application of high strength concrete to concrete-encased composite frame building based on an experimental program. The work emphasized joints behavior under reverse cyclic loading caused by earthquakes to provide information for seismic design. To investigate the internal mechanisms and seismic performance, cyclic loading tests were carried out on five half-scale interior joints. Two design variables were addressed in the research: concrete strength and axial column load. Frame joints performance including crack pattern, failure mode, deformation, ductility, strain distribution, and energy dissipation capacity was investigated. It was found that all joint specimens behaved in a manner with joint panel shear failure. Using high strength concrete increased the joint strength and had relatively little effect on the stiffness and ductility. The axial column load helped the joint strength by better mobilizing the outer part of the joint, but it had an obvious influence on the ductility and energy-dissipating capacity, which can be improved by providing enough transverse reinforcement. A typical crack pattern was also provided which can well reflect mechanical character and damage process. This research should contribute to the future engineering applications of high strength concrete to concrete-encased composite structure.


Sign in / Sign up

Export Citation Format

Share Document