Somatic nuclear division in the sporidia of Ustilago violacea. III. Ultrastructural observations

1976 ◽  
Vol 22 (4) ◽  
pp. 495-506 ◽  
Author(s):  
N. H. Poon ◽  
A. W. Day

The paper provides detailed ultrastructural observations on nuclear division in the smut fungus Ustilago violacea and is based on previous light-microscopic work outlining the division in living and stained cells. The division as in many other Basidiomycetes is not intranuclear, but occurs within a partially disrupted membrane. The division takes place after migration of most of the nucleus into the bud cell, after limited breakdown of the nuclear membrane, and after the formation of a spindle between two spindle-pole bodies (SPB). The remaining part of the nucleus containing the nucleolus is left behind in the parent cell and degenerates there. The SPB, as in other Basidiomycetes, is a dome-shaped relatively structureless body, quite distinct from the flat plaques of many Ascomycetes and the elaborate centrioles of Phycomycetes. The SPB divides shortly before migration into the daughter cell and invariably is located at the apex of the migrating nucleus. Nuclear division is completed when the two masses of chromatin clustered about each of the SPB's are separated as the spindle elongates. One daughter nucleus reforms in the bud and the other is reformed in the mother cell.Cells fixed and stained by conventional light-microscopic methods were examined in the light of the electron-microscopic observations to determine whether these procedures induce artefacts. Aceto-orcein and Giemsa when used cold were found to produce relatively artefact-free preparations. However, previous results in which the cells were warmed gently in these stains are now seen to contain artefacts in the form of contracted chromatinic granules often arranged in chains. These artefacts may provide useful information but clearly they must be interpreted cautiously until the nature of the changes induced by heating are known.

1987 ◽  
Vol 65 (1) ◽  
pp. 112-123 ◽  
Author(s):  
Hei Leung ◽  
P. H. Williams

Meiosis and mitoses during ascosporogenesis in fertile mating strains of Pyricularia oryzae Cavara (teleomorph: Magnaporthe grisea) were studied using a propionic–iron–hematoxylin procedure which stained chromosomes, nucleolus, and spindle pole bodies. Meioses and mitoses in P. oryzae resembled those in other ascomycetes. Zygotene chromosomes were highly contracted followed by elongation at pachytene when close pairings of homologous chromosomes were observed. Nucleoli attained a maximum diameter of 3.8 μm during pachytene. Nucleolar growth was accompanied by a rapid growth of the ascus. Chromosome lengths varied among pachytene cells, with the longest chromosome averaging 8.5 and the smallest 2.9 μm. Telomeric knobs and chromomeres were discernible on fully extended pachytene chromosomes. Six chromosomes were observed at pachytene and diakinesis, and during metaphase of ascospore mitosis. Chromosome movement at meiotic and mitotic anaphase was asynchronous, resulting in lagging chromosomes. Electron microscopic observations revealed spindle pole bodies associated with profusion and early meiotic prophase nuclei. In pachytene nuclei, 50 nm wide structures resembling synaptonemal complexes were observed.


1999 ◽  
Vol 112 (14) ◽  
pp. 2313-2321 ◽  
Author(s):  
L. Cerutti ◽  
V. Simanis

In the fission yeast Schizosaccharomyces pombe, the onset of septum formation is induced by a signal transduction network involving several protein kinases and a GTPase switch. One of the roles of the spg1p GTPase is to localise the cdc7p protein kinase to the poles of the mitotic spindle, from where the onset of septation is thought to be signalled at the end of mitosis. Immunofluorescence studies have shown that cdc7p is located on both spindle pole bodies early in mitosis, but only on one during the later stages of anaphase. This is mediated by inactivation of spg1p on one pole before the other. The GAP for spg1p is a complex of two proteins, cdc16p and byr4p. Localisation of cdc16p and byr4p by indirect immunofluorescence during the mitotic cell cycle showed that both proteins are present on the spindle pole body in interphase cells. During mitosis, byr4p is seen first on both poles of the spindle, then on only one. This occurs prior to cdc7p becoming asymmetric. In contrast, the signal due to cdc16p decreases to a low level during early mitosis, before being seen strongly on the same pole as byr4p. Double staining indicates that this is the opposite pole to that which retains cdc7p in late anaphase. Examination of the effect of inactivating cdc16p at various stages of the cell cycle suggests that cdc16p, together with cdc2p plays a role in restraining septum formation during interphase. The asymmetric inactivation of spg1p is mediated by recruitment of the cdc16p-byr4p GAP to one of the poles of the spindle before the other, and the asymmetry of the spindle pole bodies may be established early during mitosis. Moreover, the spindle pole bodies appear to be non-equivalent even after division has been completed.


1992 ◽  
Vol 3 (12) ◽  
pp. 1443-1454 ◽  
Author(s):  
J T McGrew ◽  
L Goetsch ◽  
B Byers ◽  
P Baum

Mutations in the ESP1 gene of Saccharomyces cerevisiae disrupt normal cell-cycle control and cause many cells in a mutant population to accumulate extra spindle pole bodies. To determine the stage at which the esp1 gene product becomes essential for normal cell-cycle progression, synchronous cultures of ESP1 mutant cells were exposed to the nonpermissive temperature for various periods of time. The mutant cells retained viability until the onset of mitosis, when their viability dropped markedly. Examination of these cells by fluorescence and electron microscopy showed the first detectable defect to be a structural failure in the spindle. Additionally, flow cytometric analysis of DNA content demonstrated that massive chromosome missegregation accompanied this failure of spindle function. Cytokinesis occurred despite the aberrant nuclear division, which often resulted in segregation of both spindle poles to the same cell. At later times, the missegregated spindle pole bodies entered a new cycle of duplication, thereby leading to the accumulation of extra spindle pole bodies within a single nucleus. The DNA sequence predicts a protein product similar to those of two other genes that are also required for nuclear division: the cut1 gene of Schizosaccharomyces pombe and the bimB gene of Aspergillus nidulans.


1979 ◽  
Vol 57 (18) ◽  
pp. 1860-1872 ◽  
Author(s):  
Diane Cope Peabody ◽  
Jerome J. Motta

Meiosis I in isolates of Armillaria mellea in which subhymenial hyphae are uninucleate and lack clamp connections was examined ultrastructurally. Although the overall pattern of development and basidiosporogenesis appears similar to other Homobasidiomycetes it was observed that spindle pole bodies are predominantly monoglobular and are associated with a unique membrane structure of the subtending nuclear envelope. The nuclear envelope also disappears at metaphase I and reforms by the coalescence of membrane fragments around the compacted chromatin at late telophase I. The significance of these features in relation to other Basidiomycetes is briefly discussed.


1986 ◽  
Vol 80 (1) ◽  
pp. 253-268
Author(s):  
K. Tanaka ◽  
T. Kanbe

Nuclear division in Schizosaccharomyces pombe has been studied in transmission electron micrographs of sections of cells fixed by a method of freeze-substitution. We have found cytoplasmic microtubules in the vicinity of the spindle pole bodies and two kinds of microtubules, short discontinuous ones and long, parallel ones in the intranuclear mitotic spindle. For most of the time taken by nuclear division the spindle pole bodies face each other squarely across the nuclear space but early in mitosis they briefly appear twisted out of alignment with each other, thereby imparting a sigmoidal shape to the bundle of spindle microtubules extending between them. This configuration is interpreted as indicating active participation of the spindle in the initial elongation of the dividing nucleus. It is proposed that mitosis is accompanied by the shortening of chromosomal microtubules simultaneously with the elongation of the central pole-to-pole bundle of microtubules of the intranuclear spindle. Daughter nuclei are separated by the sliding apart of interdigitating microtubules of the spindle at telophase. Some of the latter bear dense knobs at their ends.


2021 ◽  
Vol 134 (19) ◽  
Author(s):  
Alain Devault ◽  
Simonetta Piatti

ABSTRACT At mitotic exit the cell cycle engine is reset to allow crucial processes, such as cytokinesis and replication origin licensing, to take place before a new cell cycle begins. In budding yeast, the cell cycle clock is reset by a Hippo-like kinase cascade called the mitotic exit network (MEN), whose activation is triggered at spindle pole bodies (SPBs) by the Tem1 GTPase. Yet, MEN activity must be extinguished once MEN-dependent processes have been accomplished. One factor contributing to switching off the MEN is the Amn1 protein, which binds Tem1 and inhibits it through an unknown mechanism. Here, we show that Amn1 downregulates Tem1 through a dual mode of action. On one side, it evicts Tem1 from SPBs and escorts it into the nucleus. On the other, it promotes Tem1 degradation as part of a Skp, Cullin and F-box-containing (SCF) ubiquitin ligase. Tem1 inhibition by Amn1 takes place after cytokinesis in the bud-derived daughter cell, consistent with its asymmetric appearance in the daughter cell versus the mother cell. This dual mechanism of Tem1 inhibition by Amn1 may contribute to the rapid extinguishing of MEN activity once it has fulfilled its functions.


1977 ◽  
Vol 24 (1) ◽  
pp. 81-93
Author(s):  
C.N. Gordon

Chromatin behaviour during the cell division cycle of the yeast Saccharomyces cerevisiae has been investigated in cells which have been depleted of 90% of their RNA by digestion with ribonuclease. Removal of large amounts of RNA from the yeast nucleus before treatment of the cells with heavy metal fixatives and stains permits chromatin to be visualized with extreme clarity in thin sections of cells processed for electron microscopy by conventional procedures. Spindle pole bodies were also visualized by this treatment, although the associated microtubules were not. Chromatin is dispersed during interphase and occupies the non-nucleolar region of the nucleus which is known to be Feulgen-positive from light microscopy. Because spindle microtubules are not visualized, direct attachment of microtubules to chromatin fibrils could not be verified. However, chromatin was not attached directly to the spindle pole bodies and kinetochore differentiations were not observed in the nucleoplasm. During nuclear division chromatin remains dispersed and does not condense into discrete chromatids. As the nucleus expands into the bud, chromosomal distribution to the daughter cells is thought to result from the separation of the poles of the spindle apparatus with attached chromatin fibrils. However, that such distribution is occurring as the nucleus elongates is not obvious until an advanced stage of nuclear division is reached and partition of the nucleus is nearly complete. Thus, no aggregation of chromatin into metaphase or anaphase plates occurs and the appearance of chromatin during mitosis is essentially the same as in interphase. These observations indicate that the marked changes in the topological structure of chromatin which characterize mitosis in the higher eukaryotes do not occur in S. cerevisiae.


1990 ◽  
Vol 111 (5) ◽  
pp. 1913-1927 ◽  
Author(s):  
M P Rout ◽  
J V Kilmartin

Yeast spindle pole bodies (SPBs) with attached nuclear microtubles were enriched approximately 600-fold from yeast cell extracts. 14 mAbs prepared against this enriched SPB fraction define at least three components of the SPB and spindle. Immunofluorescent staining of yeast cells showed that throughout the cell cycle two of the components (110 and 90 kD) were localized exclusively to the SPB region, and the other (80 kD) was localized both to the SPB region and to particulate dots in short spindles. Immunoelectron microscopy confirmed and extended most of these findings. Thus the 110-kD component was localized to a layer in the SPB just to the nuclear side of the plane of the inner nuclear membrane. The 90-kD component was localized in a layer across the cytoplasmic face of intact SPBs, and, in SPBs where nuclear microtubules were removed by extraction with DEAE-dextran, the 90-kD component was also found in an inner nuclear layer close to where spindle microtubules emerge. In intact SPBs with attached nuclear microtubules the anit-80-kD mAb labels microtubules, particularly those close to the SPB. These results begin to provide a preliminary molecular map of the SPB and should also enable the corresponding genes to be isolated.


1995 ◽  
Vol 73 (2) ◽  
pp. 315-332 ◽  
Author(s):  
Haisheng Lü ◽  
David J. McLaughlin

Nuclear behavior and mitotic division in living and fixed somatic hyphae of Auricularia auricula-judae were studied with phase-contrast, fluorescence, and electron microscopy to clarify the process of mitosis in Auriculariales sensu stricto for cytological and phylogenetic analysis. Both conventional chemical fixation and freeze-substitution methods were employed for electron microscopic analysis. Mitotic division began when one of the two nuclei was moving into the clamp and lasted about 12 – 18 min. The spindle pole body had an electron-opaque central core surrounded by an electron-transparent zone from prometaphase to anaphase. The spindle changed the orientation of its long axis from a position parallel to the long axis of the clamp or hypha in prometaphase, to an oblique position in early metaphase, and finally to a parallel position again in midmetaphase. The nuclear envelope was disrupted in prometaphase to early metaphase and showed discontinuity at both polar and central regions in late anaphase; however, in metaphase it was intact with polar fenestrations. Nuclear division in the dikaryotic hypha was asynchronous. The data obtained from mitosis in A. auricula-judae support a close relationship of Auriculariales s.str. with homobasidiomycetes. The phylogenetic significance of the nuclear division characters is analyzed. Key words: Auricularia auricula-judae, electron microscopy, light microscopy, mitosis, phylogeny.


2005 ◽  
Vol 16 (8) ◽  
pp. 3606-3619 ◽  
Author(s):  
Alexander J. Stemm-Wolf ◽  
Garry Morgan ◽  
Thomas H. Giddings ◽  
Erin A. White ◽  
Robb Marchione ◽  
...  

Centrins, small calcium binding EF-hand proteins, function in the duplication of a variety of microtubule organizing centers. These include centrioles in humans, basal bodies in green algae, and spindle pole bodies in yeast. The ciliate Tetrahymena thermophila contains at least four centrin genes as determined by sequence homology, and these have distinct localization and expression patterns. CEN1's role at the basal body was examined more closely. The Cen1 protein localizes primarily to two locations: one is the site at the base of the basal body where duplication is initiated. The other is the transition zone between the basal body and axoneme. CEN1 is an essential gene, the deletion of which results in the loss of basal bodies, which is likely due to defects in both basal body duplication and basal body maintenance. Analysis of the three other centrins indicates that two of them function at microtubule-rich structures unique to ciliates, whereas the fourth is not expressed under conditions examined in this study, although when artificially expressed it localizes to basal bodies. This study provides evidence that in addition to its previously known function in the duplication of basal bodies, centrin is also important for the integrity of these organelles.


Sign in / Sign up

Export Citation Format

Share Document