A novel procedure for rapid isolation of plant growth promoting pseudomonads

1995 ◽  
Vol 41 (6) ◽  
pp. 533-536 ◽  
Author(s):  
Bernard R. Glick ◽  
Damir M. Karaturovíc ◽  
Peter C. Newell

A rapid and novel procedure for the isolation of plant growth promoting rhizobacteria (PGPR) is described. This method entails screening soil bacteria for the ability to utilize the compound 1-aminocyclopropane-1-carboxylate (ACC) as a sole N source, a trait that is a consequence of the presence of the activity of the enzyme ACC deaminase. This trait appears to be limited to soil bacteria that are also capable of stimulating plant growth. Seven different soil samples from two geographically disparate locations were found to contain pseudomonads that were able to to utilize ACC as a N source. Each of the seven strains was shown, by the ability of the bacterium to promote canola seedling root elongation under gnotobiotic conditions, to be a PGPR. The method described here may be used to replace the otherwise slow and tedious process of testing individual bacterial strains for their ability to promote plant growth, thereby significantly speeding up the process of finding new PGPR.Key words: plant growth promoting rhizobacteria, PGPR, 1-aminocyclopropane-1-carboxylate, ACC, ACC deaminase, bacterial fertilizer, soil bacteria.

Author(s):  
Shamal S. Kumar ◽  
Ananta G. Mahale ◽  
Md. Mifta Faizullah ◽  
J. Radha Krishna ◽  
Tharun K. Channa

Water scarcity is known as a major stumbling block towards crop development and its output all over the world. Certain free-living bacterial strains have been found near the plant root zones which have shown to improve resistance of plants towards water stress. Despite availability of basic nutrients, drought an abiotic factor substantially inhibits growth, development and yield of crops by causing an increase in ethylene levels. It is a good idea to incorporate the use of a management tool which is the utilization of plant growth-promoting rhizobacteria to help several crops manage drought conditions. Drought stress in crops can be alleviated by reducing ethylene synthesis, exopolysaccharide, osmoregulation, Indole-3-acetic acid and aggregation with the ACC deaminase-containing plant growth-promoting rhizobacteria. Inoculating pathogens like root rot (Macrophomina phaseolina) affected plant with Pseudomonas fluorescens strain TDK1 with ACC deaminase function improves drought stress. Using plant growth-promoting rhizobacteria to mitigate the negative imbibes of drought in most crops is a good idea. Several studies have been carried out on plant growth-promoting rhizobacteria, as its inoculation not only manages drought related conditions but increases root hair growth and lateral root, which assist in increased water and nutrient uptake. It limits ethylene supply, alternatively increases plant root growth by hydrolyzing 1-aminocyclopropane-1-carboxylic acid (ACC). This review will give us a perspective on the importance of plant growth-promoting rhizobacteria, as it is one of the efficient tools that helps manage drought stress on several crops.


2001 ◽  
Vol 47 (7) ◽  
pp. 642-652 ◽  
Author(s):  
Andrei A Belimov ◽  
Vera I Safronova ◽  
Tatyana A Sergeyeva ◽  
Tatyana N Egorova ◽  
Victoria A Matveyeva ◽  
...  

Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 µM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions.Key words: ACC deaminase, cadmium, ethylene, Indian mustard, pea, phytoremediation, rape, rhizobacteria.


2014 ◽  
Vol 63 (3) ◽  
pp. 261-266 ◽  
Author(s):  
AMBREEN AHMED ◽  
SHAHIDA HASNAIN

Plant growth promoting rhizobacteria (PGPR) promote plant growth by various mechanisms such as phytohormone production, enhanced water and nutrient uptake, improved nitrogen availability in the soil, production of ACC-deaminase for ethylene breakdown, phosphate solubilization, siderophore production etc. Microbial auxin production is the major factor not only responsible for strengthening the plant-microbe relationship but it also promotes plant growth and development in a positive manner. Thus, bacterial auxin production potential can be exploited for plant growth improvement that may be effective in reducing the hazardous effects of chemical fertilizers on the ecosystem used to obtain higher yields. The present review gives a better understanding of various factors and mechanisms involved in auxin production by PGPR that may be helpful in proper exploitation of these natural resources in a beneficial way.


GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 425-431
Author(s):  
Subin Thomas ◽  
Dr. M. Nandhini

Biofertilizers are fertilizers containing microorganisms that promote plant growth by improving the supply of nutrients to the host plant. The supply of nutrients is improved naturally by nitrogen fixation and solubilizing phosphorus. The living microorganisms in biofertilizers help in building organic matter in the soil and restoring the natural nutrient cycle. Biofertilizers can be grouped into Nitrogen-fixing biofertilizers, Phosphorous-solubilizing biofertilizers, Phosphorous-mobilizing biofertilizers, Biofertilizers for micro nutrients and Plant growth promoting rhizobacteria. This study conducted in Kottayam district was intended to identify the awareness and acceptance of biofertilizers among the farmers of the area. Data have been collected from 120 farmers by direct interviews with structured questionnaire.


2013 ◽  
Vol 1 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Umesh P. Shrivastava ◽  
Ashok Kumar

A total of nine strains of plant growth promoting rhizobacteria were analyzed for ACC deaminase activity, where highest ACC deaminase activity was found in Klebsiella sp strain ECI-10A (539.1 nmol α-keto butyrate/ mg protein/ h) and lowest in Microbacterium sp strain ECI-12A (122.0 nmol α-keto butyrate/ mg protein/ h). Although Microbacterium sp strain ECI-12A showed lowest level of ACC deaminase activity, but, the species of Microbacterium isolated from rhizosphere is the first report. Microbacterium sp strain ECI-12A was also analyzed under varying conditions of time, amount of 1-Aminocyclopropane-1- carboxylate (ACC), and temperature for optimization of the ACC deaminase activity. The optimum activity was recorded with the supplementation of 5mM ACC at 30°C temperature after 24h of culture growth. All the nine strains showed acdS gene in the PCR amplification of that gene. No any rhizospheric Microbacterium species showing ACC deaminase activity have been reported earlier, therefore, we report here ACC deaminase activity in Microbacterium sp ECI-12A isolated from rice rhizosphere is a novel finding. DOI: http://dx.doi.org/10.3126/ijasbt.v1i1.7921 Int J Appl Sci Biotechnol, 2013, Vol. 1(1): 11-15


2020 ◽  
pp. 1186-1194
Author(s):  
Roberta Mendes dos Santos ◽  
Everlon Cid Rigobelo

The search for plant growth-promoting rhizobacteria is an ongoing need for the development of new bioinoculants for use in various crops, including sugarcane. Bacterial strains with various plant growth-promoting properties can contribute to sustainable agricultural production. The present study aimed to isolate, characterize and select sugarcane rhizobacteria from six different varieties through principal components analysis. This study selected 167 bacterial strains with the ability to fix nitrogen, produce indolacetic acid, exhibit cellulolytic activity, and solubilize phosphate and potassium were isolated. Of these 167 bacterial strains, seven were selected by principal component analysis and identified as belonging to the genera Staphylococcus, Enterobacter, Bacillus and Achromobacter. Bacillus thuringiensis IP21 presented higher potential for nitrogen fixation and CaPO4 and AlPO4 solubilization and a lower potential for K solubilization in sugarcane. Enterobacter asburiae IP24 was efficient in indolacetic acid production and CaPO4 and FePO4 solubilization and inefficient for Araxá apatite solubilization.


2022 ◽  
Vol 1 ◽  
Author(s):  
Isaneli Batista dos Santos ◽  
Arthur Prudêncio de Araújo Pereira ◽  
Adijailton José de Souza ◽  
Elke Jurandy Bran Nogueira Cardoso ◽  
Flaviana Gonçalves da Silva ◽  
...  

Burkholderia sp. is a bacterial genus extremely versatile in the environment and has been reported for a great potential to promote plant growth via different mechanisms. Here we evaluate the plant growth-promoting mechanisms in twenty-six Burkholderia strains. Strains were evaluated for their ability to promote plant growth by means of: indole-3-acetic acid (IAA) production under different conditions of pH, salt stress and the presence or absence of L-tryptophan; exopolysaccharides (EPS) production and quorum sensing (ALH). The strains were also characterized in terms of their genetic variability and species identification through Sanger sequencing. Then, the bacteria most responsive in the greatest number of plant-growth promotion mechanisms were selected for a corn seed germination test. All bacteria synthesized IAA in medium with 0.0 or 5.0 mM of L-tryptophan in combination with either 1 or 5% of NaCl, and pH values of either 4.5 or 7.2. The EPS production was confirmed for 61.54% of the bacterial strains. Quorum sensing also occurred in 92.3% of the selected bacteria. The Jaccard similarity coefficient revealed 16 clusters with high genetic variability between bacterial strains. Bacterial strains were assigned to seven species: B. anthina, B. cepacia, B. gladioli, B. ambifaria, B. graminis, B. heleia, and Burkholderia spp. The corn seed bacterization did not affect the germination velocity index (GSI), as well as the first count of germinated seeds (FC). However, inoculations formulated with B. heleia strain G28, B. gladioli strain UAGC723, and B. graminis strain UAGC348 promoted significant increases in root length, seedling height and fresh and dry seedling phytomass, respectively. These results indicate the high biotechnological potential of several strains in the genus Burkholderia sp. as seed inoculants, favoring germination and seedling initial development.


Sign in / Sign up

Export Citation Format

Share Document