Efficacy of Facultative Oligotrophic Bacterial Strains as Plant Growth-Promoting Rhizobacteria (PGPR) and their Potency Against Two Pathogenic Fungi Causing Damping-off Diseases

2018 ◽  
Vol 04 (03) ◽  
Author(s):  
Sayed Abdelaziz ◽  
Nada F Hemeda ◽  
Eman E Belal ◽  
Rabee Elshahawy
2020 ◽  
pp. 1186-1194
Author(s):  
Roberta Mendes dos Santos ◽  
Everlon Cid Rigobelo

The search for plant growth-promoting rhizobacteria is an ongoing need for the development of new bioinoculants for use in various crops, including sugarcane. Bacterial strains with various plant growth-promoting properties can contribute to sustainable agricultural production. The present study aimed to isolate, characterize and select sugarcane rhizobacteria from six different varieties through principal components analysis. This study selected 167 bacterial strains with the ability to fix nitrogen, produce indolacetic acid, exhibit cellulolytic activity, and solubilize phosphate and potassium were isolated. Of these 167 bacterial strains, seven were selected by principal component analysis and identified as belonging to the genera Staphylococcus, Enterobacter, Bacillus and Achromobacter. Bacillus thuringiensis IP21 presented higher potential for nitrogen fixation and CaPO4 and AlPO4 solubilization and a lower potential for K solubilization in sugarcane. Enterobacter asburiae IP24 was efficient in indolacetic acid production and CaPO4 and FePO4 solubilization and inefficient for Araxá apatite solubilization.


Author(s):  
Shamal S. Kumar ◽  
Ananta G. Mahale ◽  
Md. Mifta Faizullah ◽  
J. Radha Krishna ◽  
Tharun K. Channa

Water scarcity is known as a major stumbling block towards crop development and its output all over the world. Certain free-living bacterial strains have been found near the plant root zones which have shown to improve resistance of plants towards water stress. Despite availability of basic nutrients, drought an abiotic factor substantially inhibits growth, development and yield of crops by causing an increase in ethylene levels. It is a good idea to incorporate the use of a management tool which is the utilization of plant growth-promoting rhizobacteria to help several crops manage drought conditions. Drought stress in crops can be alleviated by reducing ethylene synthesis, exopolysaccharide, osmoregulation, Indole-3-acetic acid and aggregation with the ACC deaminase-containing plant growth-promoting rhizobacteria. Inoculating pathogens like root rot (Macrophomina phaseolina) affected plant with Pseudomonas fluorescens strain TDK1 with ACC deaminase function improves drought stress. Using plant growth-promoting rhizobacteria to mitigate the negative imbibes of drought in most crops is a good idea. Several studies have been carried out on plant growth-promoting rhizobacteria, as its inoculation not only manages drought related conditions but increases root hair growth and lateral root, which assist in increased water and nutrient uptake. It limits ethylene supply, alternatively increases plant root growth by hydrolyzing 1-aminocyclopropane-1-carboxylic acid (ACC). This review will give us a perspective on the importance of plant growth-promoting rhizobacteria, as it is one of the efficient tools that helps manage drought stress on several crops.


2018 ◽  
Vol 9 (2) ◽  
pp. 53-63
Author(s):  
Ammara Abid ◽  
Ambreen Ahmed

Plant growth promoting rhizobacteria (PGPR) play an essential part in transformation, solubilization, and mobilization of nutrients procured from the soil. Plant-microbe interaction can be termed as an eco-friendly approach which not only improves plant growth but helps in sustaining the soil and prevents environmental degradation from agrochemicals. PGPR improve plant growth through various mechanisms. One of the mechanisms involved is phytohormone production by the bacterial strains. In the current study, spectral analysis of thirteen already isolated and identified auxin-producing microbial strains (AAL1, AB8, A7B, A5C, A3E, A11E, AL2, A9G, A12G, A13G, AM10, P4, and S6) was carried out. Fourier transform infrared spectroscopy (FTIR) of the bacterial IAA exhibited close structural similarity between bacterial IAA and standard IAA. The growth-enhancing capability of strains was verified through the application of these strains on Triticum aestivum seedlings and enhancement of growth was statistically analyzed which indicated remarkable improvement in growth and metabolism both under laboratory and field conditions. Several bacterial isolates also proved to be very effective in improving biochemical parameters of plants. The current study suggested that the application of IAA-producing PGPR as biofertilizer is effective in enhancing plant growth as well as plant yield.


2021 ◽  
Vol 6 (2) ◽  
pp. 255-263
Author(s):  
Indah Juwita Sari ◽  
Indria Wahyuni ◽  
Rida Oktorida Khastini ◽  
Ewi Awaliyati ◽  
Andriana Susilowati ◽  
...  

Plant Growth Promoting Bacteria Rhizobacteria (PGPR) is one of the potential bacteria to enhance of Capsicum annuum through inhabitation the growth of pathogenic fungi. This study aimed to characterize PGPR in chili plants (Capsicum annuum). PGPR was isolated from the soil habitat of the red chili plant in Cilegon, Indonesia. Screening was then carried out with the dual culture method on Petri dishes and tested through in vivo method on the red chili plant. The selected bacteria were characterized morphologically, biochemically, and physiologically. The results revealed that there were 14 single isolates of bacteria from the roots of the red chili plants. The five single bacterial isolates, namely Azostobacter, Azospirillum, Pseudomonas, Serratia, and Beijerinckia have good potential as PGPR based on multiple culture screening by producing clear zones and positively effect the growth of chili plants.


2017 ◽  
Vol 107 (8) ◽  
pp. 928-936 ◽  
Author(s):  
Ke Liu ◽  
Molli Newman ◽  
John A. McInroy ◽  
Chia-Hui Hu ◽  
Joseph W. Kloepper

A study was designed to screen individual strains of plant growth-promoting rhizobacteria (PGPR) for broad-spectrum disease suppression in vitro and in planta. In a preliminary screen, 28 of 196 strains inhibited eight different tested pathogens in vitro. In a secondary screen, these 28 strains showed broad spectrum antagonistic activity to six different genera of pathogens, and 24 of the 28 strains produced five traits reported to be related to plant growth promotion, including nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore production, and biofilm formation. In advanced screens, the 28 PGPR strains selected in vitro were tested in planta for biological control of multiple plant diseases including bacterial spot of tomato caused by Xanthomonas axonopodis pv. vesicatoria, bacterial speck of tomato caused by Pseudomonas syringae pv. tomato, damping-off of pepper caused by Rhizoctonia solani, and damping-off of cucumber caused by Pythium ultimum. In all, 5 of the 28 tested strains significantly reduced three of the four tested diseases, and another 19 strains showed biological control to two tested diseases. To understand the observed broad-spectrum biocontrol capacity, antiSMASH was used to predict secondary metabolite clusters of selected strains. Multiple gene clusters encoding for secondary metabolites, e.g., bacillibactin, bacilysin, and microcin, were detected in each strain. In conclusion, selected individual PGPR strains showed broad-spectrum biocontrol activity to multiple plant diseases.


Plant Disease ◽  
2000 ◽  
Vol 84 (3) ◽  
pp. 306-308 ◽  
Author(s):  
S. A. Enebak ◽  
W. A. Carey

Trials conducted in 1997 and 1998 tested eight strains of plant growth-promoting rhizobacteria (PGPR) for their capacity to induce systemic protection in loblolly pine to the causal agent of fusiform rust. Pine seeds were treated with bacteria at time of sowing, and seedlings were artificially inoculated with basidiospores of Cronartium quercuum f. sp. fusiforme 1 month later. Six months after basidiospore inoculation, seedlings were evaluated for the fusoid swelling or galls characteristic of rust infection. Compared with seedlings from seed not treated with bacteria, two bacterial isolates, Bacillus pumilus (SE34) and Serratia marcescens (90–166), significantly (P = 0.05) reduced the number of galls in 1997 and 1998. Combined data from 1997 and 1998 resulted in two additional isolates, B. pumilus (INR7) and B. pumilus (SE52), significantly (P = 0.05) reducing the number of galls. Averaged over both years, 31% of control seedlings were infected with fusiform rust, while those seedlings treated with bacterial strains SE34, 90–166, INR7, and SE52 had 13, 14, 15, and 16% infection, respectively. These four PGPR strains appear to have induced systemic resistance to fusiform rust in loblolly pine, resulting in less infection over nontreated control seedlings.


2001 ◽  
Vol 47 (7) ◽  
pp. 642-652 ◽  
Author(s):  
Andrei A Belimov ◽  
Vera I Safronova ◽  
Tatyana A Sergeyeva ◽  
Tatyana N Egorova ◽  
Victoria A Matveyeva ◽  
...  

Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 µM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions.Key words: ACC deaminase, cadmium, ethylene, Indian mustard, pea, phytoremediation, rape, rhizobacteria.


Sign in / Sign up

Export Citation Format

Share Document