Cross-talking histones: implications for the regulation of gene expression and DNA repair

2005 ◽  
Vol 83 (4) ◽  
pp. 460-467 ◽  
Author(s):  
Adam Wood ◽  
Jessica Schneider ◽  
Ali Shilatifard

The regulation of chromatin structure is essential to life. In eukaryotic organisms, several classes of protein exist that can modify chromatin structure either through ATP-dependent remodeling or through the post-translational modification of histone proteins. A vast array of processes ranging from transcriptional regulation to DNA repair rely on these histone-modifying enzymes. In the last few years, enzymes involved in the post-translational modification of histone proteins have become a topic of intense interest. Our work and the work of several other laboratories has focused largely on understanding the biological role of the yeast histone methyltransferase COMPASS (complex of proteins associated with Set1) and its human homologue the MLL complex. The Set1-containing complex COMPASS acts as the sole histone H3 lysine 4 methyltransferase in Saccharomyces cerevisiae, and this methyl mark is important for transcriptional regulation and silencing at the telomeres and rDNA loci. Another histone methyltransferase, Dot1, methylates lysine 79 of histone H3 and is also essential for proper silencing of genes near telomeres, the rDNA loci, and the mating type loci. Employing our global biochemical screen GPS (global proteomic analysis of S. cerevisiae) we have been successful in identifying and characterizing several key downstream and upstream regulators of both COMPASS and Dot1 histone methyltransferase activity. This review details efforts made towards understanding the regulatory mechanisms and biological significance of COMPASS and Dot1p-mediated histone methylation.

2021 ◽  
Vol 12 ◽  
Author(s):  
Travis J. Sanders ◽  
Fahad Ullah ◽  
Alexandra M. Gehring ◽  
Brett W. Burkhart ◽  
Robert L. Vickerman ◽  
...  

Histone proteins compact and organize DNA resulting in a dynamic chromatin architecture impacting DNA accessibility and ultimately gene expression. Eukaryotic chromatin landscapes are structured through histone protein variants, epigenetic marks, the activities of chromatin-remodeling complexes, and post-translational modification of histone proteins. In most Archaea, histone-based chromatin structure is dominated by the helical polymerization of histone proteins wrapping DNA into a repetitive and closely gyred configuration. The formation of the archaeal-histone chromatin-superhelix is a regulatory force of adaptive gene expression and is likely critical for regulation of gene expression in all histone-encoding Archaea. Single amino acid substitutions in archaeal histones that block formation of tightly packed chromatin structures have profound effects on cellular fitness, but the underlying gene expression changes resultant from an altered chromatin landscape have not been resolved. Using the model organism Thermococcus kodakarensis, we genetically alter the chromatin landscape and quantify the resultant changes in gene expression, including unanticipated and significant impacts on provirus transcription. Global transcriptome changes resultant from varying chromatin landscapes reveal the regulatory importance of higher-order histone-based chromatin architectures in regulating archaeal gene expression.


Scientifica ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xi Chen ◽  
Hui-Hsien Chou ◽  
Eve Syrkin Wurtele

Biotin is a water-soluble vitamin required by all organisms, but only synthesized by plants and some bacterial and fungal species. As a cofactor, biotin is responsible for carbon dioxide transfer in all biotin-dependent carboxylases, including acetyl-CoA carboxylase, methylcrotonyl-CoA carboxylase, and pyruvate carboxylase. Adding biotin to carboxylases is catalyzed by the enzyme holocarboxylase synthetase (HCS). Biotin is also involved in gene regulation, and there is some indication that histones can be biotinylated in humans. Histone proteins and most histone modifications are highly conserved among eukaryotes. HCS1 is the only functional biotin ligase inArabidopsisand has a high homology with human HCS. Therefore, we hypothesized that HCS1 also biotinylates histone proteins inArabidopsis. A comparison of the catalytic domain of HCS proteins was performed among eukaryotes, prokaryotes, and archaea, and this domain is highly conserved across the selected organisms. Biotinylated histones could not be identifiedin vivoby using avidin precipitation or two-dimensional gel analysis. However, HCS1 physically interacts withArabidopsishistone H3in vitro, indicating the possibility of the role of this enzyme in the regulation of gene expression.


2008 ◽  
Vol 28 (6) ◽  
pp. 2023-2034 ◽  
Author(s):  
Ji-Young Kim ◽  
Hae Jin Kee ◽  
Nak-Won Choe ◽  
Sung-Mi Kim ◽  
Gwang-Hyeon Eom ◽  
...  

ABSTRACT Histone methylation is crucial for transcriptional regulation and chromatin remodeling. It has been suggested that the SET domain containing protein RE-IIBP (interleukin-5 [IL-5] response element II binding protein) may perform a function in the carcinogenesis of certain tumor types, including myeloma. However, the pathogenic role of RE-IIBP in these diseases remains to be clearly elucidated. In this study, we have conducted an investigation into the relationship between the histone-methylating activity of RE-IIBP and transcriptional regulation. Here, we report that RE-IIBP is up-regulated in the blood cells of leukemia patients, and we characterized the histone H3 lysine 27 (H3-K27) methyltransferase activity of RE-IIBP. Point mutant analysis revealed that SET domain cysteine 483 and arginine 477 are critical residues for the histone methyltransferase (HMTase) activity of RE-IIBP. RE-IIBP also represses basal transcription via histone deacetylase (HDAC) recruitment, which may be mediated by H3-K27 methylation. In the chromatin immunoprecipitation assays, we showed that RE-IIBP overexpression induces histone H3-K27 methylation, HDAC recruitment, and histone H3 hypoacetylation on the IL-5 promoter and represses expression. Conversely, short hairpin RNA-mediated knockdown of RE-IIBP reduces histone H3-K27 methylation and HDAC occupancy around the IL-5 promoter. These data illustrate the important regulatory role of RE-IIBP in transcriptional regulation, thereby pointing to the important role of HMTase activity in carcinogenesis.


2019 ◽  
Vol 23 (15) ◽  
pp. 1663-1670 ◽  
Author(s):  
Chunyan Ao ◽  
Shunshan Jin ◽  
Yuan Lin ◽  
Quan Zou

Protein methylation is an important and reversible post-translational modification that regulates many biological processes in cells. It occurs mainly on lysine and arginine residues and involves many important biological processes, including transcriptional activity, signal transduction, and the regulation of gene expression. Protein methylation and its regulatory enzymes are related to a variety of human diseases, so improved identification of methylation sites is useful for designing drugs for a variety of related diseases. In this review, we systematically summarize and analyze the tools used for the prediction of protein methylation sites on arginine and lysine residues over the last decade.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1375-1387
Author(s):  
Emmanuelle M D Martini ◽  
Scott Keeney ◽  
Mary Ann Osley

Abstract To investigate the role of the nucleosome during repair of DNA damage in yeast, we screened for histone H2B mutants that were sensitive to UV irradiation. We have isolated a new mutant, htb1-3, that shows preferential sensitivity to UV-C. There is no detectable difference in bulk chromatin structure or in the number of UV-induced cis-syn cyclobutane pyrimidine dimers (CPD) between HTB1 and htb1-3 strains. These results suggest a specific effect of this histone H2B mutation in UV-induced DNA repair processes rather than a global effect on chromatin structure. We analyzed the UV sensitivity of double mutants that contained the htb1-3 mutation and mutations in genes from each of the three epistasis groups of RAD genes. The htb1-3 mutation enhanced UV-induced cell killing in rad1Δ and rad52Δ mutants but not in rad6Δ or rad18Δ mutants, which are defective in postreplicational DNA repair (PRR). When combined with other mutations that affect PRR, the histone mutation increased the UV sensitivity of strains with defects in either the error-prone (rev1Δ) or error-free (rad30Δ) branches of PRR, but did not enhance the UV sensitivity of a strain with a rad5Δ mutation. When combined with a ubc13Δ mutation, which is also epistatic with rad5Δ, the htb1-3 mutation enhanced UV-induced cell killing. These results suggest that histone H2B acts in a novel RAD5-dependent branch of PRR.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 255
Author(s):  
Katharina F. Witting ◽  
Monique P.C. Mulder

Post-translational modification with Ubiquitin-like proteins represents a complex signaling language regulating virtually every cellular process. Among these post-translational modifiers is Ubiquitin-fold modifier (UFM1), which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Originally identified to be involved embryonic development, its biological function remains enigmatic. Recent research reveals that UFM1 regulates a variety of cellular events ranging from DNA repair to autophagy and ER stress response implicating its involvement in a variety of diseases. Given the contribution of UFM1 to numerous pathologies, the enzymes of the UFM1 cascade represent attractive targets for pharmacological inhibition. Here we discuss the current understanding of this cryptic post-translational modification especially its contribution to disease as well as expand on the unmet needs of developing chemical and biochemical tools to dissect its role.


Sign in / Sign up

Export Citation Format

Share Document