BIOCHEMICAL CHANGES IN PROGRESSIVE MUSCULAR DYSTROPHY: VI. INCORPORATION OF URIDINE-2-14C INTO RNA OF VARIOUS TISSUE OF NORMAL AND DYSTROPHIC MICE

1967 ◽  
Vol 45 (9) ◽  
pp. 1419-1425 ◽  
Author(s):  
Uma Srivastava

Normal and dystrophic mice were injected intravenously with uridine-2-14C at various stages of the disease. Radioactivity in the acid-soluble fraction of most of the tissues studied was unchanged or not significantly different in dystrophic animals. In vivo incorporation of uridine-2-14C into RNA increased in dystrophic muscle as compared to normal muscle at 30 days, remained the same at 60 days, and was reduced at 90 days. Similar results were also observed on the in vitro incorporation of uridine-2-14C catalyzed by homogenates of normal and dystrophic muscle. Dystrophic brain and pancreas showed a decrease in the incorporation at each stage investigated as compared to controls. No change in the incorporation was noted in dystrophic and normal liver, kidney, spleen, and heart. The decrease in uridine-2-14C incorporation in dystrophic muscle at 90 days could be due to an increased RNA content. Such a phenomenon was explained as due to infiltration of dystrophic muscle by invading macrophages.It is concluded that the metabolism of RNA is not decreased in the dystrophic muscle in preliminary stages of the disease as compared to the control.

1972 ◽  
Vol 50 (4) ◽  
pp. 409-415 ◽  
Author(s):  
Uma Srivastava

The synthesis of native myosin, actin, and tropomyosin in the skeletal muscle of normal and hereditary dystrophic mice was studied with the help of direct counting as well as acrylamide-gel electrophoresis and protein purification procedures.Labelling of the nascent protein indicated that heavier polysomes from the normal muscle were able to incorporate more radioactivity into the protein than the heavier polysomes from the dystrophic muscles. Contrary to this, lighter polysomes in the dystrophic muscle demonstrated higher incorporation as compared to the normal.Results of in vivo and in vitro incorporation as well as those of acrylamide-gel electrophoresis and protein purification procedures indicated that synthesis of myosin decreased in the dystrophic muscle. The synthesis of actin did not show a significant change either in normal or dystrophic muscle, whereas that of tropomyosin increased sharply in the dystrophic mouse muscle.


1968 ◽  
Vol 46 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Uma Srivastava

Protein nitrogen content, RNA concentration, and in vivo incorporation of L-[U-14C]leucine into protein and of [2-14C]uridine into RNA of homogenate and various fractions of muscle of normal and dystrophic mice were measured at various stages of the disease. Protein nitrogen content was always lower in dystrophic than in normal muscle, and this became more pronounced with the progress of the disease. Most of the decrease was due to loss of proteins from the myofibrils. RNA content increased in the homogenate, nuclei–myofibrils, supernatant, and microsomes of dystrophic muscle. In the mitochondria of dystrophic muscle, no change was noted compared to controls. The ratio of RNA content to protein in the homogenate, nuclei–myofibrils, supernatant, and microsomes was also greater in dystrophic muscle. It was not changed in dystrophic muscle mitochondria. Incorporation of L-[U-14C]leucine into proteins of dystrophic muscle homogenate and various fractions also increased to variable degrees over that in the controls. It was further observed that mitochondrial and microsomal protein incorporate L-[U-14C]leucine in dystrophic muscle at an increased rate but the disappearance of 14C was even greater, compared to controls.In vivo incorporation of [2-14C]uridine into RNA of dystrophic muscle increased at 30 days', remained the same at 60 days', and declined at 90 days' duration of the disease. Similar results were also obtained in the nuclei–myofibrillar fraction of dystrophic muscle. In all other fractions an increase was noted in incorporation in dystrophic muscle. The incorporation of [2-14C]uridine into RNA in supernatant and microsomes was higher in dystrophic muscle but the disappearance of 14C was greater, compared to controls. It is quite evident in the microsomal fraction at 90 days, where no change in the incorporation is noted in normal and dystrophic animals.


1981 ◽  
Vol 196 (2) ◽  
pp. 591-601 ◽  
Author(s):  
F. Bradley Hillgartner ◽  
Anne S. Williams ◽  
James A. Flanders ◽  
Dexter Morin ◽  
Robert J. Hansen

Myofibrillar protein degradation was measured in 4-week-old normal (line 412) and genetically muscular-dystrophic (line 413) New Hampshire chickens by monitoring the rates of 3-methylhistidine excretion in vivo and in vitro. A method of perfusing breast and wing muscles was developed and the rate of 3-methylhistidine release in vitro was measured between 30 and 90min of perfusion. During this perfusion period, 3-methylhistidine release from the muscle preparation was linear, indicating that changes in 3-methylhistidine concentration of the perfusate were the result of myofibrillar protein degradation. Furthermore, the viability of the perfused muscle was maintained during this interval. After 60min of perfusion, ATP, ADP and creatine phosphate concentrations in pectoral muscle were similar to muscle freeze-clamped in vivo. Rates of glucose uptake and lactate production were constant during the perfusion. In dystrophic-muscle preparations, the rate of 3-methylhistidine release in vitro (nmol/h per g of dried muscle) was elevated 2-fold when compared with that in normal muscle. From these data the fractional degradation rates of myofibrillar protein in normal and dystrophic pectoral muscle were calculated to be 12 and 24% respectively. Daily 3-methylhistidine excretion (nmol/day per g body wt.) in vivo was elevated 1.35-fold in dystrophic chickens. Additional studies revealed that the anti-dystrophic drugs diphenylhydantoin and methylsergide, which improve righting ability of dystrophic chickens, did not alter 3-methylhistidine release in vitro. This result implies that changes in myofibrillar protein turnover are not the primary lesion in avian muscular dystrophy. From tissue amino acid analysis, the myofibrillar 3-methylhistidine content per g dry weight of muscle was similar in normal and dystrophic pectoral muscle. More than 96% of the 3-methylhistidine present in pectoral muscle was associated with the myofibrillar fraction. Dystrophic myofibrillar protein contained significantly less 3-methylhistidine (nmol/g of myofibrillar protein) than protein from normal muscle. This observation supports the hypothesis that there may be a block in the biochemical maturation and development of dystrophic muscle after hatching. Free 3-methylhistidine (nmol/g wet wt.) was elevated in dystrophic muscle, whereas blood 3-methylhistidine concentrations were similar in both lines. In summary, the increased myofibrillar protein catabolism demonstrated in dystrophic pectoral muscle correlates with the increased lysosomal cathepsin activity in this tissue as reported by others.


1981 ◽  
Vol 59 (4) ◽  
pp. 329-334 ◽  
Author(s):  
Uma Srivastava ◽  
Mikael Sebag ◽  
Manohar Thakur

cAMP and cGMP contents were determined in the skeletal and cardiac muscle of normal and dystrophic mice. cAMP content increased in the dystrophic muscle at every stage of the disease whereas cGMP content decreased in the preliminary stages and increased at the terminal stage of the disease. The content of both nucleotides per heart was not affected in murine dystrophy. Thus, levels of cyclic nucleotides appear to be selectively altered in dystrophic skeletal muscle.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Ross W. Stephens ◽  
Gregory D. Tredwell ◽  
Jessica L. Bell ◽  
Karen J. Knox ◽  
Lee A. Philip ◽  
...  

Abstract Background Understanding the regional vascular delivery of particles to tumour sites is a prerequisite for developing new diagnostic and therapeutic composites for treatment of oncology patients. We describe a novel imageable 67Ga-radiolabelled polymer composite that is biocompatible in an animal tumour model and can be used for preclinical imaging investigations of the transit of different sized particles through arterial networks of normal and tumour-bearing organs. Results Radiolabelling of polymer microspheres with 67Ga was achieved using a simple mix and wash method, with tannic acid as an immobilising agent. Final in vitro binding yields after autoclaving averaged 94.7%. In vivo stability of the composite was demonstrated in New Zealand white rabbits by intravenous administration, and intrahepatic artery instillations were made in normal and VX2 tumour implanted rabbit livers. Stability of radiolabel was sufficient for rabbit lung and liver imaging over at least 3 hours and 1 hour respectively, with lung retention of radiolabel over 91%, and retention in both normal and VX2 implanted livers of over 95%. SPECT-CT imaging of anaesthetised animals and planar imaging of excised livers showed visible accumulation of radiolabel in tumours. Importantly, microsphere administration and complete liver dispersal was more easily achieved with 8 μm diameter MS than with 30 μm MS, and the smaller microspheres provided more distinct and localised tumour imaging. Conclusion This method of producing 67Ga-radiolabelled polymer microspheres is suitable for SPECT-CT imaging of the regional vascular delivery of microspheres to tumour sites in animal models. Sharper distinction of model tumours from normal liver was obtained with smaller MS, and tumour resolution may be further improved by the use of 68Ga instead of 67Ga, to enable PET imaging.


1963 ◽  
Vol 205 (5) ◽  
pp. 897-901 ◽  
Author(s):  
Marilyn W. McCaman

The activities of 20 enzymes in normal, heterozygous, and dystrophic mouse muscle were studied by means of quantitative microchemical methods. Enzyme activities in normal and heterozygous muscle were essentially the same. In dystrophic muscle glucose-6-P dehydrogenase, 6-P-gluconic dehydrogenase, glutathione reductase, peptidase, ß-glucuronidase, and glucokinase activities were significantly higher than in normal muscle, while α-glycero-P dehydrogenase and lactic dehydrogenase activities were significantly lower. The pattern of enzyme activities found in normal gastrocnemius denervated by nerve section was strikingly similar to that in dystrophic muscle.


1918 ◽  
Vol 28 (5) ◽  
pp. 571-583
Author(s):  
Julia T. Parker

1. The livers of rabbits inoculated with cultures of Bacillus typhosus or Bacillus prodigiosus under certain conditions contain a toxic substance extractable with salt solution. When the toxic extracts are injected intravenously into normal rabbits the latter animals develop symptoms resembling those of anaphylactic shock and succumb. The lethal doses of the toxic extracts are far smaller than those of normal liver extract. 2. The livers of rabbits injected with typhoid antigen also yield a toxic extract. 3. Boiling as well as filtration through a Berkefeld filter only partially detoxicates the extract. 4. Tolerance to one to two lethal doses of the poisonous extracts can be induced by cautious immunization. 5. Rabbits actively immunized to Bacillus typhosus or Bacillus prodigiosus usually resist one lethal dose of the homologous liver poison; and animals tolerant to the typhoid liver poison resist one minimum lethal dose at least of Bacillus typhosus. 6. Typhoid immune serum is not detoxicating either in vivo or in vitro for the typhoid liver poison. 7. The liver poisons are specific, since rabbits actively immunized to either Bacillus typhosus or Bacillus prodigiosus withstand at least one minimum lethal dose of the homologous but not of the heterologous-liver poisons.


1967 ◽  
Vol 34 (2) ◽  
pp. 525-533 ◽  
Author(s):  
G. G. Borisy ◽  
E. W. Taylor

The majority of the colchicine-3H bound by tissue culture cells (KB or Hela) was found to be present as a noncovalent complex with a macromolecule which appears in the soluble fraction after homogenization. Similar binding was demonstrated in vitro and was confined to a component of the soluble fraction. The binding-equilibrium constant and the kinetic constants were essentially the same in vivo and in vitro. Bound radioactivity was reisolated and shown to be present in a molecule with the same chromatographic behavior and specific antimitotic activity as colchicine. In vitro assay of binding activity of a variety of cells and tissues showed a correlation with the presence of microtubules. High binding activity was given by dividing cells, mitotic apparatus, cilia, sperm tails, and brain tissue. Binding to extracts of slime mold or to purified muscle proteins was very low or undetectable. The binding site had a sedimentation constant of 6S and it is suggested that the protein is a subunit of microtubules.


Sign in / Sign up

Export Citation Format

Share Document