Ribosomal RNA: the message or matrix for ribosomal proteins

1976 ◽  
Vol 54 (2) ◽  
pp. 192-193
Author(s):  
D. R. Miller ◽  
A. T. Matheson ◽  
L. P. Visentin

The known nucleotide sequence of Escherichia coli 16S ribosomal RNA has been converted to amino acid sequences in all possible ways, and compared to known ribosomal protein sequences. The degree of similarity is precisely what one would expect by chance alone, providing additional evidence that ribosomal proteins cannot be coded for by ribosomal RNA.

Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 375-386 ◽  
Author(s):  
A Vincent ◽  
S W Liebman

Abstract The accurate synthesis of proteins is crucial to the existence of a cell. In yeast, several genes that affect the fidelity of translation have been identified (e.g., omnipotent suppressors, antisuppressors and allosuppressors). We have found that the dominant omnipotent suppressor SUP46 encodes the yeast ribosomal protein S13. S13 is encoded by two similar genes, but only the sup46 copy of the gene is able to fully complement the recessive phenotypes of SUP46 mutations. Both copies of the S13 genes contain introns. Unlike the introns of other duplicated ribosomal protein genes which are highly diverged, the duplicated S13 genes have two nearly identical DNA sequences of 25 and 31 bp in length within their introns. The SUP46 protein has significant homology to the S4 ribosomal protein in prokaryotic-type ribosomes. S4 is encoded by one of the ram (ribosomal ambiguity) genes in Escherichia coli which are the functional equivalent of omnipotent suppressors in yeast. Thus, SUP46 and S4 demonstrate functional as well as sequence conservation between prokaryotic and eukaryotic ribosomal proteins. SUP46 and S4 are most similar in their central amino acid sequences. Interestingly, the alterations resulting from the SUP46 mutations and the segment of the S4 protein involved in binding to the 16S rRNA are within this most conserved region.


2017 ◽  
Vol 61 (4) ◽  
pp. 421-426 ◽  
Author(s):  
Joanna Kołsut ◽  
Paulina Borówka ◽  
Błażej Marciniak ◽  
Ewelina Wójcik ◽  
Arkadiusz Wojtasik ◽  
...  

AbstractIntroduction: Colibacillosis – the most common disease of poultry, is caused mainly by avian pathogenic Escherichia coli (APEC). However, thus far, no pattern to the molecular basis of the pathogenicity of these bacteria has been established beyond dispute. In this study, genomes of APEC were investigated to ascribe importance and explore the distribution of 16 genes recognised as their virulence factors.Material and Methods: A total of 14 pathogenic for poultry E. coli strains were isolated, and their DNA was sequenced, assembled de novo, and annotated. Amino acid sequences from these bacteria and an additional 16 freely available APEC amino acid sequences were analysed with the DIFFIND tool to define their virulence factors.Results: The DIFFIND tool enabled quick, reliable, and convenient assessment of the differences between compared amino acid sequences from bacterial genomes. The presence of 16 protein sequences indicated as pathogenicity factors in poultry resulted in the generation of a heatmap which categorises genomes in terms of the existence and similarity of the analysed protein sequences.Conclusion: The proposed method of detection of virulence factors using the capabilities of the DIFFIND tool may be useful in the analysis of similarities of E. coli and other sequences deriving from bacteria. Phylogenetic analysis resulted in reliable segregation of 30 APEC strains into five main clusters containing various virulence associated genes (VAGs).


1998 ◽  
Vol 64 (7) ◽  
pp. 2473-2478 ◽  
Author(s):  
Ashraf A. Khan ◽  
Eungbin Kim ◽  
Carl E. Cerniglia

ABSTRACT Aeromonas trota AK2, which was derived from ATCC 49659 and produces the extracellular pore-forming hemolytic toxin aerolysin, was mutagenized with the transposon mini-Tn5Km1 to generate a hemolysin-deficient mutant, designated strain AK253. Southern blotting data indicated that an 8.7-kb NotI fragment of the genomic DNA of strain AK253 contained the kanamycin resistance gene of mini-Tn5Km1. The 8.7-kb NotI DNA fragment was cloned into the vector pGEM5Zf(−) by selecting for kanamycin resistance, and the resultant clone, pAK71, showed aerolysin activity in Escherichia coli JM109. The nucleotide sequence of the aerA gene, located on the 1.8-kbApaI-EcoRI fragment, was determined to consist of 1,479 bp and to have an ATG initiation codon and a TAA termination codon. An in vitro coupled transcription-translation analysis of the 1.8-kb region suggested that the aerA gene codes for a 54-kDa protein, in agreement with nucleotide sequence data. The deduced amino acid sequence of the aerA gene product ofA. trota exhibited 99% homology with the amino acid sequence of the aerA product of Aeromonas sobria AB3 and 57% homology with the amino acid sequences of the products of the aerA genes of Aeromonas salmonicida 17-2 and A. sobria 33.


1989 ◽  
Vol 35 (1) ◽  
pp. 195-199 ◽  
Author(s):  
Makoto Kimura ◽  
Evelyn Arndt ◽  
Tomomitsu Hatakeyama ◽  
Tamiko Hatakeyama ◽  
Junko Kimura

The amino acid sequences of 16 ribosomal proteins from archaebacterium Halobacterium marismortui have been determined by a direct protein chemical method. In addition, amino acid sequences of three proteins, S11, S18, and L25, have been established by DNA sequencing of their genes as well as by protein sequencing. Comparison of their sequences with those of ribosomal proteins from other organisms revealed that proteins S14, S16, S19, and L25 are related to both eukaryotic and eubacterial ribosomal proteins, being more homologous to eukaryotic than eubacterial counterparts, and proteins S12, S15, and L16 are related to only eukaryotic ribosomal proteins. Furthermore, some proteins are found to be similar to only eubacterial proteins, whereas other proteins show no homology to any other known ribosomal proteins. Comparisons of amino acid compositions between halophilic and nonhalophilic ribosomal proteins revealed that halophilic proteins gain asparatic and glutamic acid residues and significantly lose lysine and arginine residues. In addition, halophilic proteins seem to lose isoleucine as compared with Escherichia coli ribosomal proteins.Key words: halobacteria, ribosomal proteins, amino acid sequence.


1990 ◽  
Vol 68 (1) ◽  
pp. 169-179 ◽  
Author(s):  
Daniel Leclerc ◽  
Léa Brakier-Gingras

Various approaches have been developed to study how mutations in Escherichia coli ribosomal RNA affect the function of the ribosome. Most of them are in vivo approaches, where mutations are introduced in a specialized plasmid harboring the ribosomal RNA genes. The mutated plasmids are then expressed in an appropriate host, where they can confer resistance to antibiotics whose target is the ribosome. Conditions can be used where the host ribosomal RNA genes or the host ribosomes are selectively inactivated, and the effect of the mutations on ribosome assembly and function can be studied. Another approach, which has been developed mainly with 16S ribosomal RNA, can be used entirely in vitro. In this approach, a plasmid has been constructed which contains the 16S ribosomal RNA gene under control of a T7 promoter. Mutations can be introduced in the 16S ribosomal RNA sequence and the mutated 16S ribosomal RNAs are produced by in vitro transcription. It is then possible to investigate how the mutations affect the assembly of the 16S ribosomal RNA into 30S subunits and the activity of the reconstituted 30S subunits in cell-free protein synthesis assays. Although these approaches are recent, they have already provided a large body of interesting information, relating specific RNA sequences to interactions with ribosomal proteins, to ribosome function, and to its response to antibiotics.Key words: ribosomal RNA, ribosome, site-directed mutagenesis, antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document