Fractionation of human low density lipoprotein by column chromatography

1976 ◽  
Vol 54 (12) ◽  
pp. 1023-1028 ◽  
Author(s):  
Bernard Rubenstein ◽  
George Steiner

We have devised a method to fractionate low density lipoprotein (LDL) into subspecies by means of column chromatography. DEAE-agarose columns, 2.6 × 60 cm, were loaded with LDL (25–45 mg LDL protein) and eluted with a 0.045–0.13 M NaCl gradient. The LDL eluted over a volume of 900 ml. Specific portions of the eluted LDL, reapplied to a column identical with the original, reelute at about the same point. Altering the NaCl concentration of the elution fluid changed the elution volume. The cholesterol-protein ratio of the LDL subfractions was progressively lower in fractions eluting at higher NaCl concentrations. These results indicate the LDL is not a homogenous lipoprotein species but consists of subfractions which differ in at least charge and cholesterol content.

1980 ◽  
Vol 26 (9) ◽  
pp. 1261-1265 ◽  
Author(s):  
J Gabor ◽  
M Spain ◽  
N Kalant

Abstract We examined the cholesterol/protein ratio and the apoprotein composition of serum lipoproteins in a randomly selected population of maturity-onset diabetics and in a group of nondiabetics of similar age. We found no differences in cholesterol distribution between the groups as a whole, but diabetics with above-normal low-density lipoproteins (LDL) had decreased concentrations of high-density lipoprotein (HDL) cholesterol. In the diabetics as a whole, there was an increase in the cholesterol/protein ratio in HDL, a negative correlation between the amounts of LDL cholesterol and HDL cholesterol, an increase in the proportion of apolipoprotein C in very-low-density lipoprotein (VLDL), and a decrease in the proportion of the apolipoprotein AI component of HDL. In diabetic subjects with increased VLDL, there was an increase in the relative amount of apolipoprotein CIII, and a consequent decrease in the ratio of apolipoprotein CII/apolipoprotein CIII in the VLDL. In both diabetic and control subjects, apolipoprotein E and cholesterol content of VLDL were linearly related.


1978 ◽  
Vol 56 (10) ◽  
pp. 977-980 ◽  
Author(s):  
Bernard Rubenstein

Low density lipoprotein (LDL) was fractionated into subspecies by the use of DEAE-agarose column chromatography and the peptide compositions of the LDL subspecies which eluted at different NaCl concentrations were determined. LDL which elutes at low NaCl concentration has relatively less non-B apoprotein than does LDL which elutes at high salt concentration. The LDL subspecies which elute at high NaCl concentration contain more apo A-1 than do those which elute at the lower NaCl molarity. These results indicate that LDL consists of subfractions which differ in their peptide compositions.


Author(s):  
Shahenda, M. Elaby ◽  
Asmaa A. Salem ◽  
Jehan, B. Ali ◽  
A. F. Abdel-Salam

Two lactobacilli strains; Lactobacillus acidophilus ATCC 20079 and Lactobacillus plantarum ATCC 20179 and two bifidobacteria strains; Bifidobacterium bifidum GSGG 5286 and Bifidobacterium longum ATCC 15707 were studied their abilities to reduce the cholesterol content in vitro. It was investigated that the in vivo cholesterol-lowering effect of L. plantarum ATCC 20179, B. bifidum GSGG 5286 and mixture of both probiotics (L. plantarum ATCC20179 and B. bifidum GSGG5286) on hyperlipidaemic rats for 8 weeks. All lactobacilli and bifidobacteria strains assimilate the cholesterol content in laboratory media. It was observed the highest assimilation of cholesterol was in L. plantarum ATCC 20179 and B. bifidum GSGG 5286 strains. In vivo, L. plantarum ATCC 20179  group was more effective in improving serum lipid profile levels [total cholesterol (TC), triglycerides (TG), low density lipoprotein – cholesterol (LDL-C), high density lipoprotein – cholesterol                   (HDL-C), very low density lipoprotein – cholesterol (VLDL-C) and Atherogenic Index (AI)],                      liver enzyme activities (ALT, AST and ALP),  malonaldehyde (MDA), hydrogen peroxide (H2O2) and total antioxidants capacity (TAC) levels than mixed-organisms and B. bifidum groups, respectively of hyperlipidaemic rats. It was concluded that L. plantarum ATCC 20179 showed more                     favourable results than B. bifidum GSGG 5286 in relation to cardiovascular risk factors in hyperlipidaemic rats.


2020 ◽  
Vol 9 (23) ◽  
Author(s):  
Peter Willeit ◽  
Calvin Yeang ◽  
Patrick M. Moriarty ◽  
Lena Tschiderer ◽  
Stephen A. Varvel ◽  
...  

Background Conventional "low‐density lipoprotein cholesterol (LDL‐C)" assays measure cholesterol content in both low‐density lipoprotein and lipoprotein(a) particles. To clarify the consequences of this methodological limitation for clinical care, our study aimed to compare associations of “LDL‐C” and corrected LDL‐C with risk of cardiovascular disease and to assess the impact of this correction on the classification of patients into guideline‐recommended LDL‐C categories. Methods and Results Lipoprotein(a) cholesterol content was estimated as 30% of lipoprotein(a) mass and subtracted from “LDL‐C” to obtain corrected LDL‐C values (LDL‐C corr30 ). Hazard ratios for cardiovascular disease (defined as coronary heart disease, stroke, or coronary revascularization) were quantified by individual‐patient‐data meta‐analysis of 5 statin landmark trials from the Lipoprotein(a) Studies Collaboration (18 043 patients; 5390 events; 4.7 years median follow‐up). When comparing top versus bottom quartiles, the multivariable‐adjusted hazard ratio for cardiovascular disease was significant for “LDL‐C” (1.17; 95% CI, 1.05–1.31; P =0.005) but not for LDL‐C corr30 (1.07; 95% CI, 0.93–1.22; P =0.362). In a routine laboratory database involving 531 144 patients, reclassification of patients across guideline‐recommended LDL‐C categories when using LDL‐C corr30 was assessed. In “LDL‐C” categories of 70 to <100, 100 to <130, 130 to <190, and ≥190 mg/dL, significant proportions (95% CI) of participants were reassigned to lower LDL‐C categories when LDL‐C corr30 was used: 30.2% (30.0%–30.4%), 35.1% (34.9%–35.4%), 32.9% (32.6%–33.1%), and 41.1% (40.0%–42.2%), respectively. Conclusions “ LDL‐C” was associated with incident cardiovascular disease only when lipoprotein(a) cholesterol content was included in its measurement. Refinement in techniques to accurately measure LDL‐C, particularly in patients with elevated lipoprotein(a) levels, is warranted to assign risk to the responsible lipoproteins.


1998 ◽  
Vol 27 (suppl 1) ◽  
pp. P70-P70
Author(s):  
M. J. Landray ◽  
J. Muskin ◽  
G. Sagar ◽  
S. Murray ◽  
U. Martin ◽  
...  

1990 ◽  
Vol 83 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Bruce A. Griffin ◽  
Muriel J. Caslake ◽  
Brigitte Yip ◽  
Graeme W. Tait ◽  
Christopher J. Packard ◽  
...  

1976 ◽  
Vol 54 (1) ◽  
pp. 27-31 ◽  
Author(s):  
M. Langelier ◽  
P. Connelly ◽  
M. T. R. Subbiah

Plasma lipoprotein profile and composition in atherosclerosis-susceptible White Carneau and atherosclerosis-resistant Show Racer pigeons were investigated while consuming a regular pigeon chow diet free of cholesterol. Plasma was studied by analytical and preparative ultracentrifugation and paper electrophoresis. Lipid composition of each lipoprotein was determined by combined TLC–GLC techniques. The major plasma lipoprotein of both breeds was high density lipoprotein (HDL) with some low density lipoprotein (LDL) and no very low density lipoprotein (VLDL). Cholesterol was mainly found in the HDL in both breeds (71.7%), and no difference was noticed in the total cholesterol content of whole plasma or in various lipoproteins. The LDL fraction in White Carneaux showed a significantly lower (P < 0.05) percentage of cholesterol esters compared with Show Racers (58.63 ± 4.9 in White Carneaux vs. 72.12 ± 2.1 in Show Racers). In LDL, the percentage of the triglyceride concentration in White Carneaux was significantly lower (P < 0.01) than that of Show Racers while the percentage of protein content in White Carneaux was higher than in Show Racers. No significant differences were observed in fatty acid composition of steryl esters, phospholipids, and triglycerides in the lipoprotein fractions of the two breeds. These studies show important differences in the cholesterol esters, protein, and triglyceride content of LDL in the atherosclerosis-susceptible breed of pigeons.


1991 ◽  
Vol 6 (3) ◽  
pp. 223-230 ◽  
Author(s):  
J.-G. Lehoux ◽  
A. Lefebvre

ABSTRACT Low-density lipoprotein (LDL) receptor mRNA was found in both rat and hamster adrenals. Within 30 min after ACTH administration a significant increase in the levels of both LDL receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) mRNAs was observed in rat adrenals; these levels remained increased for up to 240 min. The increase in the levels of LDL receptor and HMG-CoA reductase mRNAs produced by ACTH was reduced by co-administration of aminoglutethimide while, at the same time, the adrenal cholesterol content of rats treated with both aminoglutethimide and ACTH was significantly increased compared with that in groups treated with ACTH alone. Cycloheximide also induced increased levels of rat adrenal mRNAs for LDL receptor and HMG-CoA reductase, but this effect was not additive with that of ACTH. These results suggest that, in the rat, the short-term effect of ACTH on the levels of mRNAs for the LDL receptor and HMG-CoA reductase is similarly controlled and might be mediated through changes in the adrenal cholesterol content. In the hamster adrenal, however, no significant fluctuations were found in the level of LDL receptor mRNA, although a marked increase was found in the level of HMG-CoA reductase mRNA, 2 h after ACTH administration. This indicates that an important effect of ACTH on cholesterol metabolism in the hamster adrenal is at the level of HMG-CoA reductase. In the hamster, therefore, where the main source of cholesterol for the adrenal gland is de-novo synthesis, it seems that a complex mechanism is involved in the control of LDL receptor gene expression.


Sign in / Sign up

Export Citation Format

Share Document