Hepatotrophic effects of insulin on glucose, glycogen, and adenine nucleotides in hepatocytes isolated from fed adult rats
In vivo observations have suggested that there is an hepatotrophic effect of insulin. By contrast, subsequent in vitro work, using the isolated perfused liver system, showed no effect or indeterminate effects of insulin on the transport of glucose into the hepatocyte. However because this system may not have endured long enough to show such an influence we explored the transport of glucose using a 48-h suspension culture of hepatocytes isolated from young adult fed rats, the suspension being infused continuously with insulin at a rate approximating the maximum entering portal blood in the fed state. (In a separate study phloridzin was added after 2 h of incubation.) DNA, intracellular glucose and its inward transport, glycogen, and the adenine nucleotides were measured at intervals. By comparison with control or untreated cells, insulin-treated cells showed significantly more DNA and intracellular glucose, and the differences were abolished by phloridzin. Glucose transport rates fell to low values in untreated controls and still lower with insulin plus phloridzin. but the initial rate was maintained to the end (48 h) by insulin alone. Results for glycogen were similar to those for intracellular glucose. There was a close correlation (r = 0.96) between these two. The total adenine nucleotide pool and the concentration of ATP were maintained for about 24 h and fell to half their initial values by 48 h. Insulin had increased these concentrations significantly by 6 h. Although concentrations of ADP and AMP decreased gradually in all groups of cells, insulin enhanced the level of ADP by 12 h but had no measurable effect on that of AMP. The energy charge increased slightly throughout incubation but more so (by 6 h) in the presence of insulin. In conclusion the data support the concept that in the longer term (> 12 h) insulin in the portal circulation maintains the characteristic free permeability of the hepatocyte to glucose and this permits a variety of effects related to glucose entry into the hepatocyte.