scholarly journals The role of leptin in the regulation of TSH secretion in the fed state: in vivo and in vitro studies

2002 ◽  
Vol 174 (1) ◽  
pp. 121-125 ◽  
Author(s):  
TM Ortiga-Carvalho ◽  
KJ Oliveira ◽  
BA Soares ◽  
CC Pazos-Moura

Leptin has been shown to stimulate the hypothalamus-pituitary-thyroid axis in fasting rodents; however, its role in thyroid axis regulation under physiological conditions is still under investigation. Here it was investigated in freely fed rats whether leptin modulates thyrotroph function in vivo and whether leptin has direct pituitary effects on TSH release. Since leptin is produced in the pituitary, the possibility was also investigated that leptin may be a local regulator of TSH release. TSH was measured by specific RIA. Freely fed adult rats 2 h after being injected with a single s.c. injection of 8 microg leptin/100 g body weight showed a 2-fold increase in serum TSH (P<0.05). Hemi-pituitary explants incubated with 10(-9) and 10(-7) M leptin for 2 h showed a reduced TSH release of 40 and 50% respectively (P<0.05). Conversely, incubation of hemi-pituitary explants with antiserum against leptin, aiming to block the action of locally produced leptin, resulted in higher TSH release (45%, P<0.05). In conclusion, also in the fed state, leptin has an acute stimulatory effect on TSH release in vivo, acting probably at the hypothalamus. However, the direct pituitary effect of leptin is inhibitory and data also provide evidence that in the rat pituitary leptin may act as an autocrine/paracrine inhibitor of TSH release.

2019 ◽  
Vol 20 (6) ◽  
pp. 1318 ◽  
Author(s):  
Alexandra Kupke ◽  
Sabrina Becker ◽  
Konstantin Wewetzer ◽  
Barbara Ahlemeyer ◽  
Markus Eickmann ◽  
...  

Mammalian Bornavirus (BoDV-1) typically causes a fatal neurologic disorder in horses and sheep, and was recently shown to cause fatal encephalitis in humans with and without transplant reception. It has been suggested that BoDV-1 enters the central nervous system (CNS) via the olfactory pathway. However, (I) susceptible cell types that replicate the virus for successful spread, and (II) the role of olfactory ensheathing cells (OECs), remained unclear. To address this, we studied the intranasal infection of adult rats with BoDV-1 in vivo and in vitro, using olfactory mucosal (OM) cell cultures and the cultures of purified OECs. Strikingly, in vitro and in vivo, viral antigen and mRNA were present from four days post infection (dpi) onwards in the olfactory receptor neurons (ORNs), but also in all other cell types of the OM, and constantly in the OECs. In contrast, in vivo, BoDV-1 genomic RNA was only detectable in adult and juvenile ORNs, nerve fibers, and in OECs from 7 dpi on. In vitro, the rate of infection of OECs was significantly higher than that of the OM cells, pointing to a crucial role of OECs for infection via the olfactory pathway. Thus, this study provides important insights into the transmission of neurotropic viral infections with a zoonotic potential.


2017 ◽  
Vol 312 (1) ◽  
pp. E27-E36 ◽  
Author(s):  
Servane Le Plénier ◽  
Arthur Goron ◽  
Athanassia Sotiropoulos ◽  
Eliane Archambault ◽  
Chantal Guihenneuc ◽  
...  

Citrulline (CIT) is an endogenous amino acid produced by the intestine. Recent literature has consistently shown CIT to be an activator of muscle protein synthesis (MPS). However, the underlying mechanism is still unknown. Our working hypothesis was that CIT might regulate muscle homeostasis directly through the mTORC1/PI3K/MAPK pathways. Because CIT undergoes both interorgan and intraorgan trafficking and metabolism, we combined three approaches: in vivo, ex vivo, and in vitro. Using a model of malnourished aged rats, CIT supplementation activated the phosphorylation of S6K1 and 4E-BP1 in muscle. Interestingly, the increase in S6K1 phosphorylation was positively correlated ( P < 0.05) with plasma CIT concentration. In a model of isolated incubated skeletal muscle from malnourished rats, CIT enhanced MPS (from 30 to 80% CIT vs. Ctrl, P < 0.05), and the CIT effect was abolished in the presence of wortmannin, rapamycin, and PD-98059. In vitro, on myotubes in culture, CIT led to a 2.5-fold increase in S6K1 phosphorylation and a 1.5-fold increase in 4E-BP1 phosphorylation. Both rapamycin and PD-98059 inhibited the CIT effect on S6K1, whereas only LY-294002 inhibited the CIT effect on both S6K1 and 4E-BP1. These findings show that CIT is a signaling agent for muscle homeostasis, suggesting a new role of the intestine in muscle mass control.


Endocrinology ◽  
2007 ◽  
Vol 148 (10) ◽  
pp. 4952-4964 ◽  
Author(s):  
Mario Perello ◽  
Ronald C. Stuart ◽  
Charles A. Vaslet ◽  
Eduardo A. Nillni

Different physiological conditions affect the biosynthesis and processing of hypophysiotropic proTRH in the hypothalamic paraventricular nucleus, and consequently the output of TRH. Early studies suggest that norepinephrine (NE) mediates the cold-induced activation of the hypothalamic-pituitary-thyroid axis at a central level. However, the specific role of NE on the biosynthesis and processing of proTRH has not been fully investigated. In this study, we found that NE affects gene transcription, protein biosynthesis, and secretion in TRH neurons in vitro; these changes were coupled with an up-regulation of prohormone convertase enzymes (PC) 1/3 and PC2. In vivo, NE is the main mediator of the cold-induced activation of the hypothalamic-pituitary-thyroid axis at the hypothalamic level, in which it potently stimulates the biosynthesis and proteolytic processing of proTRH through a coordinated up-regulation of the PCs. This activation occurs via β-adrenoreceptors and phosphorylated cAMP response element binding signaling. In contrast, α-adrenoreceptors regulate TRH secretion but not proTRH biosynthesis and processing. Therefore, this study provides novel information on the molecular mechanisms of control of hypophysiotropic TRH biosynthesis.


2000 ◽  
Vol 113 (23) ◽  
pp. 4221-4230 ◽  
Author(s):  
D. Wang ◽  
J.R. Grammer ◽  
C.S. Cobbs ◽  
J.E. Stewart ◽  
Z. Liu ◽  
...  

p125 focal adhesion kinase (p125FAK) is a cytoplasmic tyrosine kinase that is activated upon engagement of integrin cell adhesion receptors, and initiates several signaling events that modulate cell function in vitro. To determine the biologic role of p125FAK in malignant astrocytic tumor cells, U-251MG human malignant astrocytoma cells were stably transfected with p125FAK cDNA using the TET-ON system, and stable clones isolated that exhibited an estimated 5- or 20-fold increase in p125FAK expression on administration of 0.1 or 2.0 microg/ml doxycycline, respectively. In vitro studies demonstrated that induction of p125FAK resulted in a 2- to 3-fold increase in cell migration, increased p130CAS phosphorylation, localization of exogenous p125FAK to focal adhesions, and a 2-fold increase in soft agar growth. To determine the role of p125FAK in vivo, clones were injected stereotactically into the brains of scid mice. A 4.5-fold estimated increase in p125FAK expression was induced by administration of doxycycline in the drinking water. Analysis of xenograft brains demonstrated that, upon induction of p125FAK, there was a 1.6- to 2.8-fold increase in tumor cell number, and an increase in mAb PCNA-labeling of tumor cells in the absence of a change in the apoptotic index. Compared to normal brain, the expression of p125FAK was elevated in malignant astrocytic tumor biopsies from patient samples. These data demonstrate for the first time that p125FAK promotes tumor cell proliferation in vivo, and that the underlying mechanism is not associated with a reduction in apoptosis.


1980 ◽  
Vol 58 (10) ◽  
pp. 1004-1011 ◽  
Author(s):  
Khursheed N. Jeejeebhoy ◽  
Joseph Ho ◽  
Rajni Mehra ◽  
Alan Bruce-Robertson

In vivo observations have suggested that there is an hepatotrophic effect of insulin. By contrast, subsequent in vitro work, using the isolated perfused liver system, showed no effect or indeterminate effects of insulin on the transport of glucose into the hepatocyte. However because this system may not have endured long enough to show such an influence we explored the transport of glucose using a 48-h suspension culture of hepatocytes isolated from young adult fed rats, the suspension being infused continuously with insulin at a rate approximating the maximum entering portal blood in the fed state. (In a separate study phloridzin was added after 2 h of incubation.) DNA, intracellular glucose and its inward transport, glycogen, and the adenine nucleotides were measured at intervals. By comparison with control or untreated cells, insulin-treated cells showed significantly more DNA and intracellular glucose, and the differences were abolished by phloridzin. Glucose transport rates fell to low values in untreated controls and still lower with insulin plus phloridzin. but the initial rate was maintained to the end (48 h) by insulin alone. Results for glycogen were similar to those for intracellular glucose. There was a close correlation (r = 0.96) between these two. The total adenine nucleotide pool and the concentration of ATP were maintained for about 24 h and fell to half their initial values by 48 h. Insulin had increased these concentrations significantly by 6 h. Although concentrations of ADP and AMP decreased gradually in all groups of cells, insulin enhanced the level of ADP by 12 h but had no measurable effect on that of AMP. The energy charge increased slightly throughout incubation but more so (by 6 h) in the presence of insulin. In conclusion the data support the concept that in the longer term (> 12 h) insulin in the portal circulation maintains the characteristic free permeability of the hepatocyte to glucose and this permits a variety of effects related to glucose entry into the hepatocyte.


2001 ◽  
Vol 169 (2) ◽  
pp. 321-331 ◽  
Author(s):  
S Mussche ◽  
K D'Herde

To investigate the role of progesterone (P4) as a survival factor in quail granulosa cell explants, P4 content was determined under various conditions and correlated with apoptotic indexes (AIs) evaluated by 2',6'-diamidino-2-phenylindole (DAPI)-staining. Analysis of serum-free cultures from 24 to 96 h shows decreased P4 levels in the medium paralleled by increasing AI. Inhibiting apoptosis by gonadotropic support (FSH, 100 ng/ml) stimulates a 3-fold increase of the P4 level in the medium (83.49+/-8.69 vs 26.31+/-1.61 ng/ml in serum-free controls) together with a significant decrease in AI from 8.81+/-1.06% in serum-free controls to 3.50+/-0.72%. Substantial evidence for P4 as an autocrine/paracrine survival factor can be inferred from experiments with aminoglutethimide (AG, 1 mM) and RU486 (20 microM). Blocking P4 synthesis by AG causes a 2-fold increase in apoptosis from 6.08+/-0.67% in serum-free controls to 12.53+/-1.60%. Blocking P4 receptors by RU486 causes a similar increase in AI (3.02+/-0.98% in serum-free controls to 17.07+/-3.20%) and about a 50% decrease in P4. The effect of RU486 could be attenuated by exogenous P4 but not by dexamethasone indicating selective binding of P4 to the progesterone receptor. Dexamethasone treatment promotes survival without affecting P4 levels. In further support of an autocrine/paracrine action for P4 in the granulosa cells, both the A and B form of the avian P4 receptor (PR) are identified in vivo and in vitro by Western blotting. Exogenous administration of P4 only affects survival when endogenous P4 synthesis is blocked or after 48 h of serum-free culture when endogenous P4 production is very low. Because FSH also affects survival when its stimulatory effect on P4 synthesis is blocked by AG (AI decrease from 6.08+/-0.67% in serum-free controls to 1.64+/-0.71% in FSH+AG treated) it is proposed that (1) P4 is an autocrine/paracrine survival factor in the preovulatory granulosa and (2) FSH mediates both P4-dependent and P4-independent survival pathways.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nikhil Tewari ◽  
Deepa Kanagasabapathy ◽  
Rachel J. Blosser ◽  
Edward F. Srour ◽  
Angela Bruzzaniti ◽  
...  

Bone marrow adipose tissue (MAT) increases with aging and contributes to low bone density and skeletal fractures. However, the cells and factors within the bone marrow (BM) that regulate adipogenesis remain poorly understood. In the current study, we examined the role of osteal macrophages (OMs) and megakaryocytes (MKs) on the regulation of adipogenesis. We cultured murine osteoblasts/osteoblast progenitors (OBs from hereon) derived from neonatal calvarial cells (CCs, a combination of OBs and OMs) or OBs isolated by fluorescence activated cell sorting (FACS) in the presence or absence of fetal liver derived murine MK. The cells underwent induced adipogenesis for 5-7 days by supplementation of media with insulin, indomethacin, and dexamethasone, and then the number of adipocytes was quantified.   We found that co-culturing MKs and OMs with OBs results in up to a 7.8-fold and 11.7-fold increase in adipocytes, respectively. We also elucidated that thrombopoietin (TPO), the major growth factor for MKs, inhibits adipogenesis in both OBs and CCs by approximately 60%. Similarly, we found that CCs and OBs derived from mice deficient in the TPO receptor, Mpl, had approximately 30% more adipocytes than their wild-type (WT) counterparts. Finally, in vitro findings were corroborated in vivo through quantification of MKs and adipocytes in mice in which MK number was elevated or reduced. Mice with significantly higher numbers of BM-residing MKs also had significantly higher numbers of BM-residing adipocytes. Because there is typically an inverse relationship between adipogenesis and osteogenesis, understanding ways to inhibit adipogenesis could lead to an increase in OB number and bone formation, which in turn could lead to new treatments for bone loss diseases such as osteoporosis.


1995 ◽  
Vol 145 (2) ◽  
pp. 291-297 ◽  
Author(s):  
C Horst ◽  
A Harneit ◽  
H J Seitz ◽  
H Rokos

Abstract 3,5-Di-iodo-l-thyronine (T2) is a naturally occurring metabolite of thyroxine (T4). Contrary to earlier findings, T2 has recently been shown to have rapid effects in rat liver and in mononuclear blood cells. In the experiments described here, T2 was tested to determine whether it has a TSH suppressive effect in rats in vivo and in rat pituitary fragments in vitro. In experiments over 2 weeks in rats in vivo, low doses of T2 (20–200 μg/100 g body weight per day) had no significant influence on body and organ weights, but significantly decreased TSH and T4 serum concentrations. At 200 μg/100 g per day, T2 suppressed TSH to 43% and T4 to 29% of control levels. At 1–15 μg/100 g per day, 3,5,3′-tri-iodo-l-thyronine (T3), used as a comparison to T2, had significant effects on TSH and T4 levels, and also on body weight. Fifteen μg T3/100 g per day decreased TSH to 44%, T4 to 25%, and body weight to 59% of control levels. In experiments over 3 months in rats in vivo, a low dose (25 μg/100 g per day) of T2 suppressed TSH to 60% and T4 to 57% of control levels and had no significant influence on other parameters. Conversely, 0·1 μg/100 g per day T3 had significant effects on body and organ weights as well as pellet intake, but a less pronounced TSH suppressive effect: TSH concentrations were unchanged and T4 concentrations were down to 80% of control values. In rat pituitary fragments in vitro, a clear suppression of TSH secretion after a TRH pulse was demonstrated. To summarise, T2 is a specific agonist in the negative feedback mechanism on TSH secretion at the pituitary level without other apparent thyromimetic effects. Journal of Endocrinology (1995) 145, 291–297


1989 ◽  
Vol 121 (3) ◽  
pp. 451-458 ◽  
Author(s):  
M. C. d'Emden ◽  
J. D. Wark

ABSTRACT The hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) has been shown to selectively enhance agonist-induced TSH release in the rat thyrotroph in vitro. The interaction of 1,25-(OH)2D3 with tri-iodothyronine (T3) and cortisol was studied in primary cultures of dispersed anterior pituitary cells. TRH (1 nmol/l)-induced TSH release over 1 h was enhanced by 70% (P<0·01) following exposure to 10 nmol 1,25-(OH)2D3/l for 24 h. Pretreatment with T3 (1 pmol/l–1 μmol/l) for 24 h caused a dose-dependent inhibition of TRH-induced TSH release. Net TRH-induced TSH release was inhibited by 85% at T3 concentrations of 3 nmol/l or greater. Co-incubation with 1,25-(OH)2D3 resulted in enhanced TRH-induced TSH release at all T3 concentrations tested (P<0·001). The increment of TRH-induced TSH release resulting from 1,25-(OH)2D3 pretreatment was equivalent in the presence or absence of maximal inhibitory T3 concentrations. At 1 nmol T3/1, there was a two- to threefold relative increase in 1,25-(OH)2D3-enhanced TRH-induced TSH release. Incubation with cortisol (100 pmol/l–100 nmol/l) had no effect on basal or TRH-induced TSH release, nor did it alter 1,25-(OH)2D3-enhanced TRH-induced TSH release when added 24 h before, or at the time of addition of 1,25-(OH)2D3. Actinomycin D and α-amanitin abolished 1,25-(OH)2D3-enhanced TSH secretion. These data demonstrate that the action of 1,25-(OH)2D3 in the thyrotroph required new RNA transcription, and was not affected by cortisol. In the presence of T3, the response of the thyrotroph to TRH induced by 1,25-(OH)2D3 was increased. We have shown that 1,25-(OH)2D3 has significant effects on the action of TRH and T3 in vitro. These findings support the proposal that 1,25-(OH)2D3 may modulate TSH secretion in vivo. Journal of Endocrinology (1989) 121, 451–458


Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3927-3934 ◽  
Author(s):  
Manuela Alonso ◽  
Charles Goodwin ◽  
XiaoHui Liao ◽  
Tania Ortiga-Carvalho ◽  
Danielle S. Machado ◽  
...  

The activation function-2 (AF-2) domain of the thyroid hormone (TH) receptor (TR)-β is a TH-dependent binding site for nuclear coactivators (NCoA), which modulate TH-dependent gene transcription. In contrast, the putative AF-1 domain is a TH-independent region interacting with NCoA. We determined the specificity of the AF-2 domain and NCoA interaction by evaluating thyroid function in mice with combined disruption of the AF-2 domain in TRβ, due to a point mutation (E457A), and deletion of one of the NCoAs, steroid receptor coactivator (SRC)-1. The E457A mutation was chosen because it abolishes NCoA recruitment in vitro while preserving normal TH binding and corepressor interactions resulting in resistance to TH. At baseline, disruption of SRC-1 in the homozygous knock-in (TRβE457A/E457A) mice worsened the degree of resistance to TH, resulting in increased serum T4 and TSH. During TH deprivation, disruption of AF-2 and SRC-1 resulted in a TSH rise 50% of what was seen when AF-2 alone was removed, suggesting that SRC-1 was interacting outside of the AF-2 domain. Therefore, 1) during TH deprivation, SRC-1 is necessary for activating the hypothalamic-pituitary-thyroid axis; 2) ligand-dependent repression of TSH requires an intact AF-2; and 3) SRC-1 may interact with the another region of the TRβ or the TRα to regulate TH action in the pituitary. This report demonstrates the dual interaction of NCoA in vivo: the TH-independent up-regulation possibly through another domain and TH-dependent down-regulation through the AF-2 domain.


Sign in / Sign up

Export Citation Format

Share Document