DNA binding of a nonstructural reovirus protein

1981 ◽  
Vol 59 (2) ◽  
pp. 122-130 ◽  
Author(s):  
Iris H. Shelton ◽  
George J. Kasupski Jr. ◽  
Colette Oblin ◽  
Roger Hand

The specific early inhibition of DNA synthesis in reovirus-infected cells suggests that the cell nucleus is a target for virus-induced damage. We have now examined the affinity of reovirus proteins for DNA, postulating that such affinity could provide a mechanism for the inhibition. Cytoplasmic and nuclear extracts of cells labeled with [35S]methionine from 6 to 8.5 h after infection at high multiplicity were subjected to chromatography on denatured DNA – cellulose columns. Fractions from both cytoplasm and nucleus eluted with 0.6 M NaCl contained a protein with the same electrophoretic mobility on polyacrylamide slab gels as the nonstructural (NS) reovirus protein of the sigma size class. The protein also exhibited affinity for native DNA – cellulose and denatured DNA – agarose. Electrophoretic analysis in tube gels of cell extracts labeled for 48 h before infection with [14C]leucine and from 6 to 8.5 h after infection with [3H]leucine showed increased 3H label in this protein indicating it is reovirus specific. Small amounts of mu proteins also had DNA affinity. Purified virus did not bind strongly to DNA, suggesting that the binding protein is not a structural protein of the sigma size class on the outer surface of the virus. Our results provide evidence that the sigma NS protein binds to DNA. This affinity could interfere with chromosome function in the infected cell.

1988 ◽  
Vol 8 (8) ◽  
pp. 3175-3182
Author(s):  
S Kliewer ◽  
A Dasgupta

Inhibition of host cell RNA polymerase II-mediated transcription by poliovirus infection was studied in vitro. Whole-cell extracts prepared from poliovirus-infected HeLa cells at 3 h postinfection were shown to be deficient in a factor required for specific transcription from the adenovirus major late promoter. Three lines of evidence suggest that transcription factor TFIID is deficient in poliovirus-infected cells. First, the activity required to specifically restore transcription in poliovirus-infected cell extracts was shown to copurify with TFIID through three chromatographic steps. Second, transcription reactions reconstituted with phosphocellulose-derived chromatographic fractions revealed a fourfold decrease in the specific activity of the TFIID-containing fraction prepared from poliovirus-infected cells compared with that of the same fraction prepared from mock-infected cells. Finally, TFIID and the activity required to specifically restore transcription in virus-infected cell extracts were shown to have the same kinetics of heat inactivation. Together, these results suggest that inactivation of TFIID is an early event in the inhibition of host cell RNA polymerase II transcription by poliovirus.


2000 ◽  
Vol 74 (2) ◽  
pp. 744-754 ◽  
Author(s):  
Peter Ward ◽  
R. Michael Linden

ABSTRACT Assays have been described in which duplex adeno-associated virus (AAV) DNA can be replicated in HeLa cell extracts with exogenous AAV Rep protein. These assays appear to mimic the AAV DNA replication that occurs in the cell, including the ability of extracts from adenovirus (Ad)-infected cells to replicate duplex AAV DNA templates more efficiently than extracts from uninfected cells can. We showed previously that the Ad-infected extract was able to support a more processive replication than the uninfected extract. When the Ad single-stranded DNA binding protein (Ad-DBP) was added to an uninfected extract, DNA replication became processive. Based on a strand displacement replication model, we hypothesized that the Ad-DBP was stabilizing the displaced single-stranded DNA during strand displacement replication. In this report, we show that in Ad-infected extracts most of the newly replicated duplex DNA is converted into a single-stranded form shortly after synthesis. Using the results of assays for the replication of single-stranded AAV DNA, we show that these single-stranded molecules serve as templates for additional replication. In addition, we identify a class of molecules which are likely to be intermediates of replication on single-stranded templates. We discuss a possible role for replication of single-stranded molecules in the infected cell.


1988 ◽  
Vol 8 (8) ◽  
pp. 3175-3182 ◽  
Author(s):  
S Kliewer ◽  
A Dasgupta

Inhibition of host cell RNA polymerase II-mediated transcription by poliovirus infection was studied in vitro. Whole-cell extracts prepared from poliovirus-infected HeLa cells at 3 h postinfection were shown to be deficient in a factor required for specific transcription from the adenovirus major late promoter. Three lines of evidence suggest that transcription factor TFIID is deficient in poliovirus-infected cells. First, the activity required to specifically restore transcription in poliovirus-infected cell extracts was shown to copurify with TFIID through three chromatographic steps. Second, transcription reactions reconstituted with phosphocellulose-derived chromatographic fractions revealed a fourfold decrease in the specific activity of the TFIID-containing fraction prepared from poliovirus-infected cells compared with that of the same fraction prepared from mock-infected cells. Finally, TFIID and the activity required to specifically restore transcription in virus-infected cell extracts were shown to have the same kinetics of heat inactivation. Together, these results suggest that inactivation of TFIID is an early event in the inhibition of host cell RNA polymerase II transcription by poliovirus.


1990 ◽  
Vol 10 (10) ◽  
pp. 5106-5113
Author(s):  
M E Clark ◽  
A Dasgupta

In HeLa cells, RNA polymerase III (pol III)-mediated transcription is severely inhibited by poliovirus infection. This inhibition is due primarily to the reduction in transcriptional activity of the pol III transcription factor TFIIIC in poliovirus-infected cells. However, the specific binding of TFIIIC to the VAI gene B-box sequence, as assayed by DNase I footprinting, is not altered by poliovirus infection. We have used gel retardation analysis to analyze TFIIIC-DNA complexes formed in nuclear extracts prepared from mock- and poliovirus-infected cells. In mock-infected cell extracts, two closely migrating TFIIIC-containing complexes, complexes I and II, were detected in the gel retardation assay. The slower migrating complex, complex I, was absent in poliovirus-infected cell extracts, and an increase occurred in the intensity of the faster-migrating complex (complex II). Also, in poliovirus-infected cell extracts, a new, rapidly migrating complex, complex III, was formed. Complex III may have been the result of limited proteolysis of complex I or II. These changes in TFIIIC-containing complexes in poliovirus-infected cell extracts correlated kinetically with the decrease in TFIIIC transcriptional activity. Complexes I, II, and III were chromatographically separated; only complex I was transcriptionally active and specifically restored pol III transcription when added to poliovirus-infected cell extracts. Acid phosphatase treatment partially converted complex I to complex II but did not affect the binding of complex II or III. Dephosphorylation and limited proteolysis of TFIIIC are discussed as possible mechanisms for the inhibition of pol III-mediated transcription by poliovirus.


1990 ◽  
Vol 10 (10) ◽  
pp. 5106-5113 ◽  
Author(s):  
M E Clark ◽  
A Dasgupta

In HeLa cells, RNA polymerase III (pol III)-mediated transcription is severely inhibited by poliovirus infection. This inhibition is due primarily to the reduction in transcriptional activity of the pol III transcription factor TFIIIC in poliovirus-infected cells. However, the specific binding of TFIIIC to the VAI gene B-box sequence, as assayed by DNase I footprinting, is not altered by poliovirus infection. We have used gel retardation analysis to analyze TFIIIC-DNA complexes formed in nuclear extracts prepared from mock- and poliovirus-infected cells. In mock-infected cell extracts, two closely migrating TFIIIC-containing complexes, complexes I and II, were detected in the gel retardation assay. The slower migrating complex, complex I, was absent in poliovirus-infected cell extracts, and an increase occurred in the intensity of the faster-migrating complex (complex II). Also, in poliovirus-infected cell extracts, a new, rapidly migrating complex, complex III, was formed. Complex III may have been the result of limited proteolysis of complex I or II. These changes in TFIIIC-containing complexes in poliovirus-infected cell extracts correlated kinetically with the decrease in TFIIIC transcriptional activity. Complexes I, II, and III were chromatographically separated; only complex I was transcriptionally active and specifically restored pol III transcription when added to poliovirus-infected cell extracts. Acid phosphatase treatment partially converted complex I to complex II but did not affect the binding of complex II or III. Dephosphorylation and limited proteolysis of TFIIIC are discussed as possible mechanisms for the inhibition of pol III-mediated transcription by poliovirus.


Author(s):  
W. G. Banfield ◽  
G. Kasnic ◽  
J. H. Blackwell

An ultrastructural study of the intestinal epithelium of mice infected with the agent of epizootic diarrhea of infant mice (EDIM virus) was first performed by Adams and Kraft. We have extended their observations and have found developmental forms of the virus and associated structures not reported by them.Three-day-old NLM strain mice were infected with EDIM virus and killed 48 to 168 hours later. Specimens of bowel were fixed in glutaraldehyde, post fixed in osmium tetroxide and embedded in epon. Sections were stained with uranyl magnesium acetate followed by lead citrate and examined in an updated RCA EMU-3F electron microscope.The cells containing virus particles (infected) are at the tips of the villi and occur throughout the intestine from duodenum through colon. All developmental forms of the virus are present from 48 to 168 hours after infection. Figure 1 is of cells without virus particles and figure 2 is of an infected cell. The nucleus and cytoplasm of the infected cells appear clearer than the cells without virus particles.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 726
Author(s):  
Nikole L. Warner ◽  
Kathryn M. Frietze

Dengue virus (DENV) is a major global health problem, with over half of the world’s population at risk of infection. Despite over 60 years of efforts, no licensed vaccine suitable for population-based immunization against DENV is available. Here, we describe efforts to engineer epitope-based vaccines against DENV non-structural protein 1 (NS1). NS1 is present in DENV-infected cells as well as secreted into the blood of infected individuals. NS1 causes disruption of endothelial cell barriers, resulting in plasma leakage and hemorrhage. Immunizing against NS1 could elicit antibodies that block NS1 function and also target NS1-infected cells for antibody-dependent cell cytotoxicity. We identified highly conserved regions of NS1 from all four DENV serotypes. We generated synthetic peptides to these regions and chemically conjugated them to bacteriophage Qβ virus-like particles (VLPs). Mice were immunized two times with the candidate vaccines and sera were tested for the presence of antibodies that bound to the cognate peptide, recombinant NS1 from all four DENV serotypes, and DENV-2-infected cells. We found that two of the candidate vaccines elicited antibodies that bound to recombinant NS1, and one candidate vaccine elicited antibodies that bound to DENV-infected cells. These results show that an epitope-specific vaccine against conserved regions of NS1 could be a promising approach for DENV vaccines or therapeutics to bind circulating NS1 protein.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 66 ◽  
Author(s):  
Frumence ◽  
Viranaicken ◽  
Gadea ◽  
Desprès

Zika virus (ZIKV) is an emerging arthropod-borne virus of major public health concern. ZIKV infection is responsible for congenital Zika disease and other neurological defects. Antibody-mediated virus neutralization is an essential component of protective antiviral immunity against ZIKV. In the present study, we assessed whether our GFP reporter ZIKV derived from African viral strain MR766 could be useful for the development of a flow cytometry neutralization test (FNT), as an alternative to the conventional plaque-reduction neutralization test (PRNT). To improve the efficacy of GFP-expressing MR766, we selected virus variant MR766GFP showing a high level of GFP signal in infected cells. A MR766GFP-based FNT was assayed with immune sera from adult mice that received ZIKBeHMR-2. The chimeric ZIKV clone ZIKBeHMR-2 comprises the structural protein region of epidemic strain BeH819015 into MR766 backbone. We reported that adult mice inoculated with ZIKBeHMR-2 developed high levels of neutralizing anti-ZIKV antibodies. Comparative analysis between MR766GFP-based FNT and conventional PRNT was performed using mouse anti-ZIKBeHMR-2 immune sera. Indistinguishable neutralization patterns were observed when compared with PRNT50 and FNT50. We consider that the newly developed MR766GFP-based FNT is a valid format for measuring ZIKV-neutralizing antibodies in serum specimens.


Sign in / Sign up

Export Citation Format

Share Document