Nuclear membrane-bound UDPglucuronosyltransferase of rat liver

1982 ◽  
Vol 60 (10) ◽  
pp. 972-979 ◽  
Author(s):  
Jan Zaleski ◽  
Surendra K. Bansal ◽  
Teresa Gessner

Some properties of rat liver nuclear membrane-bound UDPglucuronosyltransferase were compared with those of the endoplasmic reticulum bound enzyme. The activity of nuclear membrane-bound UDPglucuronosyltransferase was stimulated only about 1.5-fold by Lubrol WX. Under the same conditions microsomal UDPglucuronosyltransferase was, as usual, highly activated (up to 10-fold), when 4-nitrophenol was the acceptor of glucuronic acid. Specific activities of the detergent-activated enzyme were similar in microsomal and nuclear membrane preparations, when the following aglycone substrates were used: 4-methylumbelliferone, 4-nitrophenol, 1-naphthol, phenolphthalein, and testosterone. Apparent Km values for UDP-glucuronic acid ranged between 0.15–0.25 mM for glucuronidation of 4-nitrophenol and 1-naphthol, by either Lubrol WX activated or non-activated, nuclear membrane-bound UDPglucuronosyltransferase. These values were comparable to those found for detergent activated microsomal enzyme. The results show a similarity in behavior of detergent-activated UDPglucuronosyltransferase regardless of subcellular membrane source and, therefore, suggest the association of the same glucuronosyltransferase with nuclear membrane and endoplasmic reticulum. A possible significance of the presence of high activity of this enzyme in nuclear membrane is discussed.

1980 ◽  
Vol 43 (1) ◽  
pp. 269-277
Author(s):  
J.C. Richardson ◽  
A.H. Maddy

Nuclear envelopes are separated into pore-lamina and membrane sub-fractions by extraction in 2.0% Triton X-100 followed by pelleting of the pore-laminae. The polypeptides of these subfractions are then compared with those from isolated rough endoplasmic reticulum. The dispositions of individual polypeptides in the cytoplasmic surface of nuclear envelopes and rought endoplasmic reticulum were studied by lactoperoxidase-catalysed iodination. These studies show that although the nuclear membranes exhibit several homologies with the Triton-soluble polypeptides of the rough endoplasmic reticulum the relative proportion of individual polypeptides within the two systems are very largely different. The cytoplasmic surfaces of the 2 membrane systems show only 2 obvious homologies at 105 000 and 15 000 mol. wt and the overall impression is that, at least in rat liver, the outer nuclear membrane is very substantially differentiated from rough endoplasmic reticulum. It is concluded that the nuclear membranes may not be regarded as a mere continuum of the endoplasmic reticulum, but should be seen as a highly specialized membrane system in their own right.


1977 ◽  
Vol 55 (4) ◽  
pp. 408-414 ◽  
Author(s):  
J. C. Jamieson

Ultrasonic extracts of rough and smooth endoplasmic reticulum fractions and Golgi fractions from rat liver were examined by immunoelectrophoresis using antiserum to α1-acid glycoprotein. Rough endoplasmic reticulum fractions contained only sialic acid free α1-acid glycoprotein, whereas smooth endoplasmic reticulum and Golgi fractions also contained sialic acid containing α1-acid glycoprotein. Determination of the sialic acid contents of immune precipitates isolated from the extracts suggested that the Golgi complex was the main site of addition of sialic acid to α1-acid glycoprotein. Immunological studies on puromycin extracts of polyribosomes showed that polypeptide chains of α1-acid glycoprotein and albumin were assembled mainly on membrane-bound polyribosomes. Evidence is presented from incorporation studies with labelled leucine and glucosamine that initial glycosylation of α1-acid glycoprotein occurs mainly or entirely after release of nascent polypeptide from the ribosomal site.


1974 ◽  
Vol 60 (2) ◽  
pp. 460-472 ◽  
Author(s):  
David H. DeHeer ◽  
Merle S. Olson ◽  
R. Neal Pinckard

The induction of acute hepatocellular necrosis in rats resulted in the production of complement fixing, IgM autoantibodies directed toward inner and outer mitochondrial membranes, microsomal membrane, lysosomal membrane, nuclear membrane, cytosol, but not to plasma membrane. Utilizing selective absorption procedures it was demonstrated that each subcellular membrane fraction possessed unique autoantigenic activity with little or no cross-reactivity between the various membrane fractions. It is proposed that the development of membrane-specific autoantibodies may provide an immunological marker useful in the differential characterization of various subcellular membranes.


1996 ◽  
Vol 1283 (2) ◽  
pp. 223-231 ◽  
Author(s):  
Eric Battaglia ◽  
Susan Nowell ◽  
Richard R. Drake ◽  
Magdalena Mizeracka ◽  
Carl L. Berg ◽  
...  

1989 ◽  
Vol 259 (3) ◽  
pp. 659-663 ◽  
Author(s):  
F Vanstapel ◽  
L Hammaker ◽  
K Pua ◽  
N Blanckaert

We examined regulatory properties of bilirubin UDP-glucuronyltransferase in sealed RER (rough endoplasmic reticulum)- and SER (smooth endoplasmic reticulum)-enriched microsomes (microsomal fractions), as well as in nuclear envelope from rat liver. Purity of membrane fractions was verified by electron microscopy and marker studies. Intactness of RER and SER vesicles was ascertained by a high degree of latency of the lumenal marker mannose-6-phosphatase. No major differences in the stimulation of UDP-glucuronyltransferase by detergent or by the presumed physiological activator, UDPGlcNAc, were observed between total microsomes and RER- or SER-enriched microsomes. Isolated nuclear envelopes were present as a partially disrupted membrane system, with approx. 50% loss of mannose-6-phosphatase latency. The nuclear transferase had lost its latency to a similar extent, and the enzyme failed to respond to UDPGlcNAc. Our results underscore the necessity to include data on the integrity of the membrane permeability barrier when reporting regulatory properties of UDP-glucuronyltransferase in different membrane preparations.


1974 ◽  
Vol 140 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Néstor F. González-Cadavid ◽  
Carmen Sáez De Córdova

The functional distinction of membrane-bound and free polyribosomes for the synthesis of exportable and non-exportable proteins respectively is not so strict as was initially thought, and it was therefore decided to investigate their relative contribution to the elaboration of an internal protein integrated into a cell structure. Cytochrome c was chosen as an example of a soluble mitochondrial protein, and the incorporation of [14C]leucine and δ-amino[14C]laevulinate into the molecule was studied by using different ribosomal preparations from regenerating rat liver. A new procedure was devised for the purification of cytochrome c, based on ion-exchange chromatography combined with sodium dodecyl sulphate–polyacrylamide-gel electrophoresis. In spite of cytochrome c being a non-exportable protein, the membrane-bound polyribosomes were at least as active as the free ribosomes in the synthesis in vitro of the apoprotein and the haem moiety. The detergent-treated ribosomes could also effect the synthesis of cytochrome c, although at a lower rate. Since in liver more than two-thirds of the ribosomes are bound to the endoplasmic-reticulum membranes, it is considered that in vivo they are responsible for the synthesis of most of the cytochrome c content of the cell. This suggests that in secretory tissues the endoplasmic reticulum plays a predominant role in mitochondrial biogenesis, although free ribosomes may participate in the partial turnover of some parts of the organelle. The hypothesis on the functional specialization of the different kinds of ribosomes was therefore modified to account for their parallel intervention in the synthesis of proteins associated with membranous structures.


1978 ◽  
Vol 176 (1) ◽  
pp. 9-14 ◽  
Author(s):  
D N Palmer ◽  
B R Rabin ◽  
D J Williams

The chemical-carcinogen-induced detachment of ribosomes from rat liver endoplasmic reticulum was studied in vitro. Incubation of postmitochondrial supernatant with 0.2 mM-diethylnitrosamine or N-2-acetylaminofluorene removed approx. 16% of membrane-bound ribosomes, measured as differences in RNA/protein values of membrane separated from unbound ribosomes by flotation. These ribosomes are also detached by exposure to high centrifugal forces (160000g) and are among those removed by NADPH-catalysed lipid peroxidation. Extensive lipid peroxidation prohibits any measurement. The ribosomes (polyribosomes) removed are not those detached from the membrane by exposure to high KC1 concentrations (loosely bound) or high KC1 concentrations in the presence of puromycin (tightly bound). It is concluded then that centrifugally labile and carcinogen-sensitive represent a previously unreported sub-population of membrane-bound ribosomes.


Sign in / Sign up

Export Citation Format

Share Document