The possible role of the superoxide ion in the induction of heat-shock and specific proteins in aerobic Drosophila cells during return to normoxia after a period of anaerobiosis

1983 ◽  
Vol 61 (6) ◽  
pp. 456-461 ◽  
Author(s):  
M. Ropp ◽  
A. M. Courgeon ◽  
R. Calvayrac ◽  
M. Best-Belpomme

In vitro cultured Drosophila melanogaster cells were shown to be aerobic and several kinetic parameters of their respiration were measured. This allowed us to define experimental conditions for a transient period of anaerobiosis followed by a reexposure to normal oxygenation. This treatment, applied without any change of temperature, induced not only the heat-shock proteins, but also a new specific peptide of 27 000 daltons and a twofold increase of the maximal rate of O2 uptake. This evokes a common molecular mechanism activated either by heat or by O2, which could involve the increase of the products of oxygen reduction such as the superoxide ion.

2021 ◽  
Vol 12 ◽  
Author(s):  
Stefan Tukaj ◽  
Jagoda Mantej ◽  
Michał Sobala ◽  
Katarzyna Potrykus ◽  
Zbigniew Tukaj ◽  
...  

Heat shock proteins (Hsp) are constitutive and stress-induced molecules which have been reported to impact innate and adaptive immune responses. Here, we evaluated the role of Hsp70 as a treatment target in the imiquimod-induced, psoriasis-like skin inflammation mouse model and related in vitro assays. We found that immunization of mice with Hsp70 resulted in decreased clinical and histological disease severity associated with expansion of T cells in favor of regulatory subtypes (CD4+FoxP3+/CD4+CD25+ cells). Similarly, anti-Hsp70 antibody treatment led to lowered disease activity associated with down-regulation of pro-inflammatory Th17 cells. A direct stimulating action of Hsp70 on regulatory T cells and its anti-proliferative effects on keratinocytes were confirmed in cell culture experiments. Our observations suggest that Hsp70 may be a promising therapeutic target in psoriasis and potentially other autoimmune dermatoses.


1983 ◽  
Vol 96 (1) ◽  
pp. 286-290 ◽  
Author(s):  
J M Velazquez ◽  
S Sonoda ◽  
G Bugaisky ◽  
S Lindquist

When eukaryotic cells are exposed to elevated temperatures they respond by vigorously synthesizing a small group of proteins called the heat shock proteins. An essential element in defining the role of these proteins is determining whether they are unique to a stressed state or are also found in healthy, rapidly growing cells at normal temperatures. To date, there have been conflicting reports concerning the major heat-induced protein of Drosophila cells, HSP 70. We report the development of monoclonal antibodies specific for this protein. These antibodies were used to assay HSP 70 in cells incubated under different culture conditions. The protein was detectable in cells maintained at normal temperatures, but only when immunological techniques were pushed to the limits of their sensitivity. To test for the possibility that these cells contain a reservoir of protein in a cryptic antigenic state (i.e., waiting posttranslational modification for use at high temperature), we treated cells with cycloheximide or actinomycin D immediately before heat shock. HSP 70 was not detected in these cells. Finally, we tested for the presence of a reservoir of inactive messages by using a high stringency hybridization of 32P-labeled cloned gene sequences to electrophoretically separated RNAs. Although HSP 70 mRNA was detectable in rapidly growing cells, it was present at less than 1/1,000th the level achieved after induction.


2019 ◽  
Vol 20 (7) ◽  
pp. 727-737 ◽  
Author(s):  
Vinayak Narayanankutty ◽  
Arunaksharan Narayanankutty ◽  
Anusree Nair

Background: Heat shock proteins (HSPs) are predominant molecular chaperones which are actively involved in the protein folding; which is essential in protecting the structure and functioning of proteins during various stress conditions. Though HSPs have important physiological roles, they have been well known for their roles in various pathogenic conditions such as carcinogenesis; however, limited literature has consolidated its potential as an anti-metastatic drug target. Objectives: The present review outlines the role of different HSPs on cancer progression and metastasis; possible role of HSP inhibitors as anti-neoplastic agents is also discussed. Methods: The data were collected from PubMed/Medline and other reputed journal databases. The literature that was too old and had no significant role to the review was then omitted. Results: Despite their strong physiological functions, HSPs are considered as good markers for cancer prognosis and diagnosis. They have control over survival, proliferation and progression events of cancer including drug resistance, metastasis, and angiogenesis. Since, neoplastic cells are more dependent on HSPs for survival and proliferation, the selectivity and specificity of HSP-targeted cancer drugs remain high. This has made various HSPs potential clinical and experimental targets for cancer prevention. An array of HSP inhibitors has been in trials and many others are in experimental conditions as anticancer and anti-metastatic agents. Several natural products are also being investigated for their efficacy for anticancer and anti-metastatic agents by modulating HSPs. Conclusion: Apart from their role as an anticancer drug target, HSPs have shown to be promising targets for the prevention of cancer progression. Extensive studies are required for the use of these molecules as anti-metastatic agents. Further studies in this line may yield specific and effective antimetastatic agents.


1999 ◽  
Vol 276 (3) ◽  
pp. L501-L505
Author(s):  
Claudia Racine ◽  
Evelyne Israël-Assayag ◽  
Yvon Cormier

The current study was done to look at a possible role of heat shock proteins (HSPs) in hypersensitivity pneumonitis (HP). The specific aims were to determine whether there was a difference in the expression of HSP72 in alveolar macrophages (AMs) between mice challenged with HP antigen and saline-treated control mice and between AMs obtained by bronchoalveolar lavage from 18 patients with HP and 11 normal subjects. The expression of HSP72 was studied under basal conditions and under a mild heat shock. HSP72 expression by AMs in response to in vitro stimulation with Saccharopolyspora rectivirgula was lower in AMs of control mice than in those of HP animals. HSP72 was constitutively expressed in AMs of both normal and HP subjects. Densitometric ratios showed that AMs from normal subjects responded to heat shock with a 39°C-to-37°C ratio of 1.72 ± 0.18 (mean ± SE), and AMs from HP patients responded with a ratio of 1.16 ± 0.16 ( P = 0.0377). This decreased induction by additional stress of AMs could lead to an altered immunoregulatory activity and account for the inflammation seen in HP.


2014 ◽  
Vol 21 (6) ◽  
pp. 564-571 ◽  
Author(s):  
Sourav Roy ◽  
Monobesh Patra ◽  
Suman Nandy ◽  
Milon Banik ◽  
Rakhi Dasgupta ◽  
...  

Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 471-477
Author(s):  
J Roger H Frappier ◽  
David B Walden ◽  
Burr G Atkinson

Abstract Etiolated maize radicles (inbred Oh43) subjected to a brief heat shock synthesize a family of small heat shock proteins (≃18 kD) that is composed of at least 12 members. We previously described the cDNA-derived sequence of three maize shsp mRNAs (cMHSP18-1, cMHSP18-3, and cMHSP18-9). In this report, we demonstrate that the mRNA transcribed in vitro from one of these cDNAs (cMHSP 18-9) is responsible for the synthesis of three members of the shsp family, and we suggest that cMHSP18-3 may be responsible for the synthesis of three additional members and cMHSP18-1 for the synthesis of two other members of this family. The fact that these genes do not contain introns, coupled with the observations reported herein, suggest that maize may have established another method of using a single gene to produce a number of different proteins.


2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


Sign in / Sign up

Export Citation Format

Share Document