Inhibition of DMSO-induced differentiation by hyperthermia in a murine erythroleukemia cell system

1984 ◽  
Vol 62 (11) ◽  
pp. 1091-1096 ◽  
Author(s):  
G. P. Raaphorst ◽  
E. I. Azzam ◽  
J. Borsa ◽  
M. Einspenner ◽  
J. A. Vadasz

Friend erythroleukemia cells were induced by dimethyl sulfoxide (DMSO) into erythroid differentiation, as characterized by the production of hemoglobin. Induction increased with DMSO concentrations up to 1.5% v/v, at which point about 90% of the cell population produced hemoglobin as measured by a benzidine-staining technique. Heat treatment at 39.0–40.5 °C during a 7-day-incubation period, for differentiation in the presence of DMSO, resulted in the inhibition of hemoglobin induction. Also, acute heat treatments at 41.5–46.0 °C before or after the addition of DMSO resulted in the inhibition of DMSO induction. This effect was greatest when DMSO was present during heating. The results support the conclusion that hyperthermia inhibits the differentiation process which is induced by DMSO treatment.

Blood ◽  
1994 ◽  
Vol 83 (6) ◽  
pp. 1662-1667 ◽  
Author(s):  
Y Fukuda ◽  
H Fujita ◽  
L Garbaczewski ◽  
S Sassa

The level of mRNA encoding beta-globin was examined in dimethyl sulfoxide (DMSO)-sensitive (DS), and DMSO-resistant (DR) murine erythroleukemia (MEL) cells. DR cells lack erythroid-specific delta- aminolevulinate (ALA) synthase (AL-AS-E), and fail to undergo erythroid differentiation following treatment with DMSO. Treatment of cells with DMSO markedly increased ALAS-E mRNA in DS cells, while the same treatment downregulated the nonspecific ALA synthase (ALAS-N) mRNA levels in both DS and DR cells. The levels of beta-globin mRNA, heme content, and hemoglobin in DS cells increased, while those in DR cells decreased following treatment with DMSO. Treatment of DR cells with hemin caused an increase in beta-globin mRNA and hemoglobin, and partially restored the DMSO-mediated suppression of beta-globin mRNA and hemoglobin synthesis. DMSO treatment decreased heme oxygenase (HO) mRNA in hemin-treated DS cells, but not in hemin-treated DR cells. These findings indicate that heme is necessary for accumulation of the beta-globin transcript during erythroid differentiation, and that hemin- mediated HO induction becomes markedly downregulated in differentiated erythroid cells, presumably because less free heme is available for HO induction by a greater demand for the synthesis of hemoglobin.


Blood ◽  
1994 ◽  
Vol 83 (6) ◽  
pp. 1662-1667 ◽  
Author(s):  
Y Fukuda ◽  
H Fujita ◽  
L Garbaczewski ◽  
S Sassa

Abstract The level of mRNA encoding beta-globin was examined in dimethyl sulfoxide (DMSO)-sensitive (DS), and DMSO-resistant (DR) murine erythroleukemia (MEL) cells. DR cells lack erythroid-specific delta- aminolevulinate (ALA) synthase (AL-AS-E), and fail to undergo erythroid differentiation following treatment with DMSO. Treatment of cells with DMSO markedly increased ALAS-E mRNA in DS cells, while the same treatment downregulated the nonspecific ALA synthase (ALAS-N) mRNA levels in both DS and DR cells. The levels of beta-globin mRNA, heme content, and hemoglobin in DS cells increased, while those in DR cells decreased following treatment with DMSO. Treatment of DR cells with hemin caused an increase in beta-globin mRNA and hemoglobin, and partially restored the DMSO-mediated suppression of beta-globin mRNA and hemoglobin synthesis. DMSO treatment decreased heme oxygenase (HO) mRNA in hemin-treated DS cells, but not in hemin-treated DR cells. These findings indicate that heme is necessary for accumulation of the beta-globin transcript during erythroid differentiation, and that hemin- mediated HO induction becomes markedly downregulated in differentiated erythroid cells, presumably because less free heme is available for HO induction by a greater demand for the synthesis of hemoglobin.


1982 ◽  
Vol 2 (8) ◽  
pp. 1020-1024 ◽  
Author(s):  
J A Bilello ◽  
K K Gauri ◽  
J Kühne ◽  
G Warnecke ◽  
G Koch

Alkyldeoxyuridines which differ from thymidine by a C5 substitution of straight or branched alkyl chains of two to six carbon atoms have been tested for their ability to be taken up, phosphorylated, and incorporated into DNA. Analysis of the uptake of 5-ethyl-2'-deoxyuridine and 5-propyl-2'-deoxyuridine (n-PrdU)--similar to both thymidine and 5-bromo-2'-deoxyuridine--indicates that transport is dependent upon a functional cellular thymidine kinase. All of the aforementioned pyrimidines with the exception of n-PrdU are phosphorylated to the triphosphate and incorporated into DNA. The homologs 5-iso-propyl-2'-deoxyuridine (iso-PrdU) and 5-hexyl-2'-deoxyuridine are neither transported into the cell, phosphorylated, nor incorporated into DNA. These analogs were tested (i) for their ability to induce in the absence of dimethyl sulfoxide and (ii) to determine whether they enhance or inhibit dimethyl sulfoxide-induced differentiation of Friend erythroleukemia cells. Inhibition of erythroid differentiation appears to require the incorporation of thymidine analogs into DNA, and thus only 5-ethyl-2'-deoxyuridine and 5-bromo-2'-deoxyuridine were effective in inhibiting dimethyl sulfoxide-induced differentiation. The observation that iso-PrdU, and to a lesser extent n-PrdU and 5-propyldeoxyuridine monophosphate, induce differentiation under conditions in which they are not detectable intracellularly is strong evidence that this class of inducer acts at the cell membrane.


Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2204-2209 ◽  
Author(s):  
Y Chern ◽  
S Yonekura ◽  
AJ Sytkowski

Abstract Erythropoietin (Epo) and dimethyl sulfoxide (DMSO) are believed to induce the differentiation of transformed erythroid cells by different signal transduction pathways. We have now obtained evidence for the interaction of these pathways. We used a Rauscher murine erythroleukemia cell line with a relatively low (8% to 10%) hemoglobinization response to Epo alone. Pretreatment of these cells for 1 day with DMSO followed by its removal and the addition of Epo resulted in a marked enhancement of the Epo specific hemoglobinization. We have designated this effect “DMSO priming.” This priming effect of DMSO on the Epo response was both time-dependent and DMSO concentration- dependent. DMSO priming potentiated the Epo response in three ways. Firstly, DMSO priming increased the total number of Epo responsive cells from 8% to 10% to 40% to 60%. Secondly, DMSO priming reduced the time required to reach the optimal Epo-induced response from 4 days to 2 days. Thirdly, the Epo dose-response curve was left-shifted approximately 20-fold. DMSO priming was also associated with a marked increase in Epo receptor density characterized by an apparently new receptor population and by the appearance of positive cooperativity between receptors. Our results suggest that the DMSO priming effect is due to potentiation of the Epo signaling pathway, thus resulting in a much more rapid and dramatic Epo-induced hemoglobinization response.


1982 ◽  
Vol 2 (8) ◽  
pp. 1020-1024
Author(s):  
J A Bilello ◽  
K K Gauri ◽  
J Kühne ◽  
G Warnecke ◽  
G Koch

Alkyldeoxyuridines which differ from thymidine by a C5 substitution of straight or branched alkyl chains of two to six carbon atoms have been tested for their ability to be taken up, phosphorylated, and incorporated into DNA. Analysis of the uptake of 5-ethyl-2'-deoxyuridine and 5-propyl-2'-deoxyuridine (n-PrdU)--similar to both thymidine and 5-bromo-2'-deoxyuridine--indicates that transport is dependent upon a functional cellular thymidine kinase. All of the aforementioned pyrimidines with the exception of n-PrdU are phosphorylated to the triphosphate and incorporated into DNA. The homologs 5-iso-propyl-2'-deoxyuridine (iso-PrdU) and 5-hexyl-2'-deoxyuridine are neither transported into the cell, phosphorylated, nor incorporated into DNA. These analogs were tested (i) for their ability to induce in the absence of dimethyl sulfoxide and (ii) to determine whether they enhance or inhibit dimethyl sulfoxide-induced differentiation of Friend erythroleukemia cells. Inhibition of erythroid differentiation appears to require the incorporation of thymidine analogs into DNA, and thus only 5-ethyl-2'-deoxyuridine and 5-bromo-2'-deoxyuridine were effective in inhibiting dimethyl sulfoxide-induced differentiation. The observation that iso-PrdU, and to a lesser extent n-PrdU and 5-propyldeoxyuridine monophosphate, induce differentiation under conditions in which they are not detectable intracellularly is strong evidence that this class of inducer acts at the cell membrane.


Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2204-2209
Author(s):  
Y Chern ◽  
S Yonekura ◽  
AJ Sytkowski

Erythropoietin (Epo) and dimethyl sulfoxide (DMSO) are believed to induce the differentiation of transformed erythroid cells by different signal transduction pathways. We have now obtained evidence for the interaction of these pathways. We used a Rauscher murine erythroleukemia cell line with a relatively low (8% to 10%) hemoglobinization response to Epo alone. Pretreatment of these cells for 1 day with DMSO followed by its removal and the addition of Epo resulted in a marked enhancement of the Epo specific hemoglobinization. We have designated this effect “DMSO priming.” This priming effect of DMSO on the Epo response was both time-dependent and DMSO concentration- dependent. DMSO priming potentiated the Epo response in three ways. Firstly, DMSO priming increased the total number of Epo responsive cells from 8% to 10% to 40% to 60%. Secondly, DMSO priming reduced the time required to reach the optimal Epo-induced response from 4 days to 2 days. Thirdly, the Epo dose-response curve was left-shifted approximately 20-fold. DMSO priming was also associated with a marked increase in Epo receptor density characterized by an apparently new receptor population and by the appearance of positive cooperativity between receptors. Our results suggest that the DMSO priming effect is due to potentiation of the Epo signaling pathway, thus resulting in a much more rapid and dramatic Epo-induced hemoglobinization response.


2021 ◽  
Vol 14 (2) ◽  
pp. 137
Author(s):  
Christos I. Papagiannopoulos ◽  
Nikoleta F. Theodoroula ◽  
Ioannis S. Vizirianakis

miRNAs constitute a class of non-coding RNA that act as powerful epigenetic regulators in animal and plant cells. In order to identify putative tumor-suppressor miRNAs we profiled the expression of various miRNAs during differentiation of erythroleukemia cells. RNA was purified before and after differentiation induction and subjected to quantitative RT-PCR. The majority of the miRNAs tested were found upregulated in differentiated cells with miR-16-5p showing the most significant increase. Functional studies using gain- and loss-of-function constructs proposed that miR-16-5p has a role in promoting the erythroid differentiation program of murine erythroleukemia (MEL) cells. In order to identify the underlying mechanism of action, we utilized bioinformatic in-silico platforms that incorporate predictions for the genes targeted by miR-16-5p. Interestingly, ribosome constituents, as well as ribosome biogenesis factors, were overrepresented among the miR-16-5p predicted gene targets. Accordingly, biochemical experiments showed that, indeed, miR-16-5p could modulate the levels of independent ribosomal proteins, and the overall ribosomal levels in cultured cells. In conclusion, miR-16-5p is identified as a differentiation-promoting agent in erythroleukemia cells, demonstrating antiproliferative activity, likely as a result of its ability to target the ribosomal machinery and restore any imbalanced activity imposed by the malignancy and the blockade of differentiation.


Blood ◽  
1979 ◽  
Vol 54 (4) ◽  
pp. 933-939
Author(s):  
R Gambari ◽  
RA Rifkind ◽  
PA Marks

Murine erythroleukemia cells (MELC) are induced to express erythroid differentiation when cultured with hexamethylene bisacetamide (HMBA). Newly synthesized alpha and beta globin mRNA are both relatively stable, half-life (t1/2) greater than 50 hr, early in the course of induced differentiation. In fully induced cells there is a decrease in stability of both newly synthesized alpha and beta globin mRNA. The decay of alpha mRNA is faster, (t 1/2, 10--12 hr) than beta globin mRNA (t1/2, 20--22 hr). Thus, differences in stability of alpha and beta globin mRNA plays a role in determining the ratio of alpha to beta mRNA content in differentiated erythroid cells.


Sign in / Sign up

Export Citation Format

Share Document