scholarly journals miR-16-5p Promotes Erythroid Maturation of Erythroleukemia Cells by Regulating Ribosome Biogenesis

2021 ◽  
Vol 14 (2) ◽  
pp. 137
Author(s):  
Christos I. Papagiannopoulos ◽  
Nikoleta F. Theodoroula ◽  
Ioannis S. Vizirianakis

miRNAs constitute a class of non-coding RNA that act as powerful epigenetic regulators in animal and plant cells. In order to identify putative tumor-suppressor miRNAs we profiled the expression of various miRNAs during differentiation of erythroleukemia cells. RNA was purified before and after differentiation induction and subjected to quantitative RT-PCR. The majority of the miRNAs tested were found upregulated in differentiated cells with miR-16-5p showing the most significant increase. Functional studies using gain- and loss-of-function constructs proposed that miR-16-5p has a role in promoting the erythroid differentiation program of murine erythroleukemia (MEL) cells. In order to identify the underlying mechanism of action, we utilized bioinformatic in-silico platforms that incorporate predictions for the genes targeted by miR-16-5p. Interestingly, ribosome constituents, as well as ribosome biogenesis factors, were overrepresented among the miR-16-5p predicted gene targets. Accordingly, biochemical experiments showed that, indeed, miR-16-5p could modulate the levels of independent ribosomal proteins, and the overall ribosomal levels in cultured cells. In conclusion, miR-16-5p is identified as a differentiation-promoting agent in erythroleukemia cells, demonstrating antiproliferative activity, likely as a result of its ability to target the ribosomal machinery and restore any imbalanced activity imposed by the malignancy and the blockade of differentiation.

Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1153-1156 ◽  
Author(s):  
JO Hensold ◽  
PS Swerdlow ◽  
DE Housman

Abstract Murine erythroleukemia cells are useful for studying the regulation of erythroid differentiation since these malignant pronormoblasts differentiate to orthochromatic normoblasts when treated with a variety of inducing agents. Changes in chromatin proteins have been described following inducer exposure. The significance of these changes, which are greatest in terminally differentiated cells remains unknown. Ubiquitin is a highly conserved 8.5 kilodalton peptide that is covalently linked to up to 10% of histone H2A. We demonstrate that following exposure of MEL cells to inducers of differentiation, a transient increase in ubiquitination of H2A occurs. This change is coincident with the onset of differentiation. This result suggests that ubiquitination of H2A may have a role in the nuclear changes necessary for erythroleukemic cell differentiation.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4088-4098 ◽  
Author(s):  
F Kesselring ◽  
K Spicher ◽  
H Porzig

We have studied the expression of G protein subtypes and the role of G protein-dependent signaling in two subclones of RED-1 cells, an erythropoetin(Epo)-sensitive, murine erythroleukemia cell line. Clone 6C8 showed terminal erythroid differentiation in response to a combined treatment with Epo and dimethylsulfoxide. Clone G3 was resistant to these inducers, but responded to Epo with enhanced proliferation. We measured G protein alpha subunit levels by toxin-catalyzed adenosine diphosphate (ADP)-ribosylation with [32P]-nicotinamide adenine dinucleotide (NAD) and by semiquantitative immunoblotting with specific antisera. Native RED-1 cells expressed G alpha i2, alpha i3, alpha s, and alpha q/11, but not alpha i1 and alpha o. Terminal differentiation was associated with a selective loss (approximately 80%) of G alpha i3 and an increase in a truncated cytosolic form of G alpha i2, while the membrane levels of alpha i2, alpha q/11, and alpha s did not change significantly. Treatment of G3 cells with the inducers was without effect on G protein abundance. However, except for alpha s, G3 cells contained significantly higher levels of the different G protein alpha subunits tested. Stimulation of G protein-coupled receptors by thrombin and ADP caused a pertussis toxin (PTX)-inhibitable transient increase in intracellular Ca2+ that was markedly reduced in differentiated cells. In G3 cells, but not in 6C8 cells, thrombin also caused a PTX- sensitive inhibition of isoprenaline-stimulated cyclic 3',5'-adenosine monophosphate (cAMP) formation. Our results show that specific alterations in G protein expression and function are associated with erythroid differentiation of erythroleukemia cells but do not prove a causal relationship. The loss of G alpha i3 may affect cellular responses that are mediated via P2T purine or thrombin receptors.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1153-1156
Author(s):  
JO Hensold ◽  
PS Swerdlow ◽  
DE Housman

Murine erythroleukemia cells are useful for studying the regulation of erythroid differentiation since these malignant pronormoblasts differentiate to orthochromatic normoblasts when treated with a variety of inducing agents. Changes in chromatin proteins have been described following inducer exposure. The significance of these changes, which are greatest in terminally differentiated cells remains unknown. Ubiquitin is a highly conserved 8.5 kilodalton peptide that is covalently linked to up to 10% of histone H2A. We demonstrate that following exposure of MEL cells to inducers of differentiation, a transient increase in ubiquitination of H2A occurs. This change is coincident with the onset of differentiation. This result suggests that ubiquitination of H2A may have a role in the nuclear changes necessary for erythroleukemic cell differentiation.


Blood ◽  
1979 ◽  
Vol 54 (4) ◽  
pp. 933-939
Author(s):  
R Gambari ◽  
RA Rifkind ◽  
PA Marks

Murine erythroleukemia cells (MELC) are induced to express erythroid differentiation when cultured with hexamethylene bisacetamide (HMBA). Newly synthesized alpha and beta globin mRNA are both relatively stable, half-life (t1/2) greater than 50 hr, early in the course of induced differentiation. In fully induced cells there is a decrease in stability of both newly synthesized alpha and beta globin mRNA. The decay of alpha mRNA is faster, (t 1/2, 10--12 hr) than beta globin mRNA (t1/2, 20--22 hr). Thus, differences in stability of alpha and beta globin mRNA plays a role in determining the ratio of alpha to beta mRNA content in differentiated erythroid cells.


Blood ◽  
1991 ◽  
Vol 77 (6) ◽  
pp. 1362-1370 ◽  
Author(s):  
JO Hensold ◽  
G Dubyak ◽  
DE Housman

Abstract Murine erythroleukemia (MEL) cells are a useful model for studying the processes that regulate erythroid differentiation because exposure of these cells to a variety of chemical inducing agents results in expression of erythroid-specific genes and the resultant loss of cellular immortality. Previously it has been suggested that the calcium ionophore, A23187, has effects on the early cellular events that lead to the commitment of these cells to differentiation, but was not in itself sufficient to induce differentiation. We demonstrate here that A23187, as well as another calcium ionophore, ionomycin, are capable of inducing commitment to differentiation. Unlike other inducing agents, continual exposure to A23187 inhibits transcription of the erythroid- specific genes, beta-globin and Band 3. This effect is not attributable to an increase in cytosolic calcium concentration, because cells induced by ionomycin produce normal amounts of hemoglobin. These effects of A23187 on MEL cells confirm that commitment to differentiation is a distinct event from the subsequent transcriptional activation of erythroid genes. The ability of both ionophores to induce commitment to differentiation suggests that an increase in cytosolic calcium can trigger commitment to differentiation. These agents should prove useful in investigating the cellular processes that are responsible for commitment to differentiation.


Blood ◽  
1991 ◽  
Vol 77 (6) ◽  
pp. 1362-1370 ◽  
Author(s):  
JO Hensold ◽  
G Dubyak ◽  
DE Housman

Murine erythroleukemia (MEL) cells are a useful model for studying the processes that regulate erythroid differentiation because exposure of these cells to a variety of chemical inducing agents results in expression of erythroid-specific genes and the resultant loss of cellular immortality. Previously it has been suggested that the calcium ionophore, A23187, has effects on the early cellular events that lead to the commitment of these cells to differentiation, but was not in itself sufficient to induce differentiation. We demonstrate here that A23187, as well as another calcium ionophore, ionomycin, are capable of inducing commitment to differentiation. Unlike other inducing agents, continual exposure to A23187 inhibits transcription of the erythroid- specific genes, beta-globin and Band 3. This effect is not attributable to an increase in cytosolic calcium concentration, because cells induced by ionomycin produce normal amounts of hemoglobin. These effects of A23187 on MEL cells confirm that commitment to differentiation is a distinct event from the subsequent transcriptional activation of erythroid genes. The ability of both ionophores to induce commitment to differentiation suggests that an increase in cytosolic calcium can trigger commitment to differentiation. These agents should prove useful in investigating the cellular processes that are responsible for commitment to differentiation.


2021 ◽  
Author(s):  
Katherine M. Hannan ◽  
Priscilla Soo ◽  
Mei S. Wong ◽  
Justine K. Lee ◽  
Nadine Hein ◽  
...  

AbstractThe nucleolar surveillance pathway (NSP) monitors nucleolar fidelity and responds to nucleolar stresses (i.e., inactivation of ribosome biogenesis) by mediating the inhibitory binding of ribosomal proteins (RPs) to mouse double minute 2 homolog (MDM2), a nuclear-localised E3 ubiquitin ligase, which results in p53 accumulation. Inappropriate activation of the NSP has been implicated in the pathogenesis of collection of human diseases termed “ribosomopathies”, while drugs that selectively activate the NSP are now in trials for cancer. Despite the clinical significance, the precise molecular mechanism(s) regulating the NSP remain poorly understood. Using genome-wide loss of function screens, we demonstrate the ribosome biogenesis (RiBi) axis as the most potent class of genes whose disruption stabilises p53. Furthermore, we identified a novel suite of genes critical for the NSP, including a novel mammalian protein implicated in 5S ribonucleoprotein particle (5S-RNP) biogenesis, HEATR3. By selectively disabling the NSP, we unexpectedly demonstrate that a functional NSP is required for the ability of all nuclear acting stresses tested, including DNA damage, to robustly induce p53 accumulation. Together, our data demonstrates that the NSP has evolved as the dominant central integrator of stresses that regulate nuclear p53 abundance, thus ensuring RiBi is hardwired to cellular proliferative capacity.


Sign in / Sign up

Export Citation Format

Share Document