Cultured human nasal epithelial multicellular spheroids: polar cyst-like model tissues

1991 ◽  
Vol 69 (2-3) ◽  
pp. 102-108 ◽  
Author(s):  
Michael A. Bridges ◽  
David C. Walker ◽  
Robert A. Harris ◽  
Bruce R. Wilson ◽  
A. George F. Davidson

We report here a new readily cultured nonadherent hollow spheroidal epithelial tissue model: human nasal epithelial multicellular spheroids, prepared from brushings of human nasal epithelium in vivo. Although cultured cyst-like epithelial models developed from embryonic, transformed, or polypoid tissues have been reported previously, human nasal epithelial multicellular spheroids are derived from normal mature nontransformed human airway epithelial cells. In our studies, spheroids ranged in size from 50 to 700 μm diameter (averaging approximately 250 μm). Cells of the spheroid displayed morphological polarity and formed junctional complexes. Transcellular electrolyte transport may underlie the increase in spheroid size which occurred in culture. The ease and simplicity of the brushing and culture procedures reported here render normal and diseased human cell populations more readily accessible to investigation. We believe human nasal epithelial multicellular spheroids may have important applications in the study of electrolyte and fluid transport processes, ciliary motility, epithelial polarity, cellular metabolism, and drug cytotoxicity in normal and pathophysiological states of the human respiratory tract (e.g., cystic fibrosis).Key words: cultured airway epithelial cells, electrolyte and fluid transport, spheroid, cyst, cystic fibrosis.

2008 ◽  
Vol 295 (2) ◽  
pp. L303-L313 ◽  
Author(s):  
Aura Perez ◽  
Anna M. van Heeckeren ◽  
David Nichols ◽  
Sanhita Gupta ◽  
Jean F. Eastman ◽  
...  

The pathophysiology of cystic fibrosis (CF) inflammatory lung disease is not well understood. CF airway epithelial cells respond to inflammatory stimuli with increased production of proinflammatory cytokines as a result of increased NF-κB activation. Peroxisome proliferator-activated receptor-γ (PPARγ) inhibits NF-κB activity and is reported to be reduced in CF. If PPARγ participates in regulatory dysfunction in the CF lung, perhaps PPARγ ligands might be useful therapeutically. Cell models of CF airway epithelium were used to evaluate PPARγ expression and binding to NF-κB at basal and under conditions of inflammatory stimulation by Pseudomonas aeruginosa or TNFα/IL-1β. An animal model of CF was used to evaluate the potential of PPARγ agonists as therapeutic agents in vivo. In vitro, PPARγ agonists reduced IL-8 and MMP-9 release from airway epithelial cells in response to PAO1 or TNFα/IL-1β stimulation. Less NF-κB bound to PPARγ in CF than normal cells, in two different assays; PPARγ agonists abrogated this reduction. PPARγ bound less to its target DNA sequence in CF cells. To test the importance of the reported PPARγ inactivation by phosphorylation, we observed that inhibitors of ERK, but not JNK, were synergistic with PPARγ agonists in reducing IL-8 secretion. In vivo, administration of PPARγ agonists reduced airway inflammation in response to acute infection with P. aeruginosa in CF, but not wild-type, mice. In summary, PPARγ inhibits the inflammatory response in CF, at least in part by interaction with NF-κB in airway epithelial cells. PPARγ agonists may be therapeutic in CF.


2010 ◽  
Vol 42 (6) ◽  
pp. 676-684 ◽  
Author(s):  
Michael M. Myerburg ◽  
J Darwin King ◽  
Nicholas M. Oyster ◽  
Adam C. Fitch ◽  
Amy Magill ◽  
...  

1996 ◽  
Vol 271 (4) ◽  
pp. L527-L537 ◽  
Author(s):  
C. Jiang ◽  
S. P. O'Connor ◽  
D. Armentano ◽  
P. B. Berthelette ◽  
S. C. Schiavi ◽  
...  

Cystic fibrosis (CF) airway epithelial cells exhibit defective adenosine 3',5'-cyclic monophosphate (cAMP)-mediated chloride (Cl) secretion, abnormal hyperabsorption of sodium (Na+), and aberrant fluid transport. Adenovirus-mediated transduction of cystic fibrosis transmembrane conductance regulator (CFTR) corrects these ion and fluid transport abnormalities in CF cells. However, several challenges remain pertaining to the use of adenovirus vectors for gene delivery, including the efficiency of gene transfer and the host response to the vector. To improve the efficacy of adenovirus-mediated gene transfer, we have constructed a series of recombinant adenoviruses containing different CFTR transcriptional units, and we have evaluated their relative ability to correct electrolyte and fluid transport in polarized CF airway epithelial cells. The ability of the vectors to correct the CF Cl- transport defects was greatest when the human cytomegalovirus promoter was used. The E1a and phosphoglycerate kinase promoters resulted in the greatest persistence of functional CFTR expression. Efficacy of gene expression by recombinant adenoviruses improved as the cells were treated with increasing multiplicities of infection, as the duration of viral contact with the target cells was lengthened, and when the virus concentration was increased. Transduction of functional CFTR Cl- channel activity reversed the abnormal Na+ hyperabsorption observed in CF cells in a dose-dependent manner, suggesting that Na+ channel activity is downregulated by CFTR. Although efficient correction of both cAMP-mediated Cl- transport and fluid secretion could be achieved readily with these vectors, normalization of the Na+ absorption required vector administration at high multiplicities of infection.


2013 ◽  
Vol 305 (6) ◽  
pp. L419-L431 ◽  
Author(s):  
Sharon M. Rymut ◽  
Alyssa Harker ◽  
Deborah A. Corey ◽  
James D. Burgess ◽  
Hongtao Sun ◽  
...  

Dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) leads to many cellular consequences, including perinuclear accumulation of free cholesterol due to impaired endosomal transport. The hypothesis being tested is that CF-related perinuclear cholesterol accumulation due to disrupted endocytic trafficking occurs as a result of reduced microtubule (MT) acetylation. Here, it is identified that acetylated-α-tubulin (Ac-tub) content is reduced by ∼40% compared with respective wild-type controls in both cultured CF cell models (IB3) and primary Cftr−/− mouse nasal epithelial tissue. Histone deacetylase 6 (HDAC6) has been shown to regulate MT acetylation, which provides reasonable grounds to test its impact on reduced Ac-tub content on CF cellular phenotypes. Inhibition of HDAC6, either through tubastatin treatment or HDAC6 knockdown in CF cells, increases Ac-tub content and results in redistributed free cholesterol and reduced stimulation of NF-κB activity. Mechanistically, endoplasmic reticulum stress, which is widely reported in CF and leads to aggresome formation, is identified as a regulator of MT acetylation. F508del CFTR correction with C18 in primary airway epithelial cells restores MT acetylation and cholesterol transport. A significant role for phosphatidyl inositol-3 kinase p110α is also identified as a regulator of MT acetylation.


2021 ◽  
Vol 1 (4) ◽  
pp. 229-247
Author(s):  
Onofrio Laselva ◽  
Massimo Conese

Cystic fibrosis (CF) is an autosomal recessive multi-organ disease caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, with morbidity and mortality primacy related to the lung disease. The CFTR protein, a chloride/bicarbonate channel, is expressed at the apical side of airway epithelial cells and is mainly involved in appropriate ion and fluid transport across the epithelium. Although many animal and cellular models have been developed to study the pathophysiological consequences of the lack/dysfunction of CFTR, only the three-dimensional (3D) structures termed “spheroids” and “organoids” can enable the reconstruction of airway mucosa to model organ development, disease pathophysiology, and drug screening. Airway spheroids and organoids can be derived from different sources, including adult lungs and induced pluripotent stem cells (iPSCs), each with its advantages and limits. Here, we review the major features of airway spheroids and organoids, anticipating that their potential in the CF field has not been fully shown. Further work is mandatory to understand whether they can accomplish better outcomes than other culture conditions of airway epithelial cells for CF personalized therapies and tissue engineering aims.


1995 ◽  
Vol 268 (1) ◽  
pp. C243-C251 ◽  
Author(s):  
M. E. Egan ◽  
E. M. Schwiebert ◽  
W. B. Guggino

When nonepithelial cell types expressing the delta F508-cystic fibrosis transmembrane conductance regulator (CFTR) mutation are grown at reduced temperatures, the mutant protein can be properly processed. The effect of low temperatures on Cl- channel activity in airway epithelial cells that endogenously express the delta F508-CFTR mutation has not been investigated. Therefore, we examined the effect of incubation temperature on both CFTR and outwardly rectifying Cl- channel (ORCC) activity in normal, in cystic fibrosis (CF)-affected, and in wild-type CFTR-complemented CF airway epithelia with use of a combination of inside-out and whole cell patch-clamp recording, 36Cl- efflux assays, and immunocytochemistry. We report that incubation of CF-affected airway epithelial cells at 25-27 degrees C is associated with the appearance of a protein kinase A-stimulated CFTR-like Cl- conductance. In addition to the appearance of CFTR Cl- channel activity, there is, however, a decrease in the number of active ORCC when cells are grown at 25-27 degrees C, suggesting that the decrease in incubation temperature may be associated with multiple alterations in ion channel expression and/or regulation in airway epithelial cells.


2000 ◽  
Vol 279 (2) ◽  
pp. L379-L389 ◽  
Author(s):  
Dennis W. McGraw ◽  
Susan L. Forbes ◽  
Judith C. W. Mak ◽  
David P. Witte ◽  
Patricia E. Carrigan ◽  
...  

Airway epithelial cells express β2-adrenergic receptors (β2-ARs), but their role in regulating airway responsiveness is unclear. With the Clara cell secretory protein (CCSP) promoter, we targeted expression of β2-ARs to airway epithelium of transgenic (CCSP-β2-AR) mice, thereby mimicking agonist activation of receptors only in these cells. In situ hybridization confirmed that transgene expression was confined to airway epithelium, and autoradiography showed that β2-AR density in CCSP-β2-AR mice was approximately twofold that of nontransgenic (NTG) mice. Airway responsiveness measured by whole body plethysmography showed that the methacholine dose required to increase enhanced pause to 200% of baseline (ED200) was greater for CCSP-β2-AR than for NTG mice (345 ± 34 vs. 157 ± 14 mg/ml; P < 0.01). CCSP-β2-AR mice were also less responsive to ozone (0.75 ppm for 4 h) because enhanced pause in NTG mice acutely increased to 77% over baseline ( P < 0.05) but remained unchanged in the CCSP-β2-AR mice. Although both groups were hyperreactive to methacholine 6 h after ozone exposure, the ED200for ozone-exposed CCSP-β2-AR mice was equivalent to that for unexposed NTG mice. These findings show that epithelial cell β2-ARs regulate airway responsiveness in vivo and that the bronchodilating effect of β-agonists results from activation of receptors on both epithelial and smooth muscle cells.


Sign in / Sign up

Export Citation Format

Share Document