Distribution of MAP kinase, S6 kinase, and casein kinase II in rat tissues: activation by insulin in spleen

1994 ◽  
Vol 72 (1-2) ◽  
pp. 49-53 ◽  
Author(s):  
Yong-Jiang Hei ◽  
Xunsheng Chen ◽  
Jack Diamond ◽  
John H. McNeill

We examined the distribution of mitogen-activated protein (MAP) kinase, S6 kinase, and casein kinase II (CK-II) in the muscle, spleen, brain, and testes of Wistar rats. It was observed that spleen extracts contained the highest activity of all the kinases. Anion-exchange chromatography of spleen extracts by a MonoQ column resolved a single peak of myelin basic protein phosphotransferase activity that eluted after the usual position of the previously described p42 and p44 MAP kinases. Immunoblotting of the peak fractions with anti-MAP kinase antibody did not detect any immunoreactive bands that coincided with the activity peak, suggesting that the activity may represent a potentially novel MAP kinase. The MonoQ fractionation also resolved a single peak of phosvitin phosphotransferase activity which coincided with the intensity of two immunoreactive bands of 39 and 43 kilodaltons that were detected with antibodies against CK-II. The chromatographic behaviour and immunoblotting data indicate that the phosvitin kinase peak represented CK-II and suggested that the rat spleen CK-II had a molecular structure of αα′β2. Furthermore, using an intact rat model, we showed that the potentially novel spleen MAP kinase and CK-II were markedly activated following intravenous injection of insulin. The significance of these findings remains to be determined.Key words: mitogen-activated protein kinase, S6 kinase, casein kinase II, insulin, spleen.

1997 ◽  
Vol 323 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Sung-Jin KIM ◽  
Ronald C. KAHN

After insulin receptor activation, many cytoplasmic enzymes, including mitogen-activated protein (MAP) kinase, MAP kinase kinase (MEK) and casein kinase II (CKII) are activated, but exactly how insulin signalling progresses to the nucleus remains poorly understood. In Chinese hamster ovary cells overexpressing human insulin receptors [CHO(Hirc)], MEK, CKII and the MAP kinases ERK I and ERK II can be detected by immunoblotting in the nucleus, as well as in the cytoplasm, in the unstimulated state. Nuclear localization of MAP kinase is also observed in 3T3-F442A adipocytes, NIH-3T3 cells and Fao hepatoma cells, whereas MEK is found in the nucleus only in Fao and CHO cells. Insulin treatment for 5–30 min induces a translocation of MEK from the cytoplasm to the nucleus, whereas the MAP kinases and CKII are not translocated into the nucleus in response to insulin during this period. However, nuclear MAP kinase and CKII activities increase by 2–3-fold within 1–10 min after stimulation with insulin. By using gel-shift assays, it has been shown that insulin also stimulates nuclear protein binding to an AP-1 site with kinetics similar to MEK translocation and MAP kinase and CKII activation. Treatment of the extracts in vitro with protein phosphatase 2A or treatment of the intact cells with 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole, a cell-permeable inhibitor of CKII, almost completely blocks the insulin-induced DNA-binding activity, whereas incubation of cells with a MEK inhibitor produces only a slight decrease. These results suggest that insulin signalling results in the activation of serine kinases in the nucleus via two pathways: (1) insulin stimulates the nuclear translocation of some kinases, such as MEK, which might directly phosphorylate nuclear protein substrates or activate other nuclear kinases, and (2) insulin activates nuclear kinases without translocation. The latter is true of CKII, which seems to regulate the binding of nuclear proteins to the AP-1 site, possibly by phosphorylation of AP-1 transcription factors.


1993 ◽  
Vol 13 (8) ◽  
pp. 4539-4548
Author(s):  
J Wu ◽  
J K Harrison ◽  
P Dent ◽  
K R Lynch ◽  
M J Weber ◽  
...  

Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases activated by dual phosphorylation on threonine and tyrosine residues. A MAP kinase kinase (MKK1 or MEK1) has been identified as a dual-specificity protein kinase that is sufficient to phosphorylate MAP kinases p42mapk and p44mapk on the regulatory threonine and tyrosine residues. Because of the multiplicity of MAP kinase isoforms and the diverse circumstances and agonists leading to their activation, we thought it unlikely that a single MKK could accommodate this complexity. Indeed, two protein bands with MKK activity have previously been identified after renaturation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We now report the molecular cloning and characterization of a second rat MAP kinase kinase cDNA, MKK2. MKK2 cDNA contains an open reading frame encoding a protein of 400 amino acids, 7 residues longer than MKK1 (MEK1). The amino acid sequence of MKK2 is 81% identical to that of MKK1, but nucleotide sequence differences occur throughout the aligned MKK2 and MKK1 cDNAs, indicating that MKK2 is the product of a distinct gene. MKK1 and MKK2 mRNAs are expressed differently in rat tissues. Both cDNAs when expressed in COS cells displayed the ability to phosphorylate and activate p42mapk and p44mapk, both MKK1 and MKK2 were activated in vivo in response to serum, and both could be phosphorylated and activated by the v-Raf protein in vitro. However, differences between MKK1 and MKK2 in sites of phosphorylation by proline-directed protein kinases predict differences in feedback regulation.


1995 ◽  
Vol 15 (4) ◽  
pp. 2197-2206 ◽  
Author(s):  
F Navarro-García ◽  
M Sánchez ◽  
J Pla ◽  
C Nombela

Mitogen-activated protein (MAP) kinases represent a group of serine/threonine protein kinases playing a central role in signal transduction processes in eukaryotic cells. Using a strategy based on the complementation of the thermosensitive autolytic phenotype of slt2 null mutants, we have isolated a Candida albicans homolog of Saccharomyces cerevisiae MAP kinase gene SLT2 (MPK1), which is involved in the recently outlined PKC1-controlled signalling pathway. The isolated gene, named MKC1 (MAP kinase from C. albicans), coded for a putative protein, Mkc1p, of 58,320 Da that displayed all the characteristic domains of MAP kinases and was 55% identical to S. cerevisiae Slt2p (Mpk1p). The MKC1 gene was deleted in a diploid Candida strain, and heterozygous and homozygous strains, in both Ura+ and Ura- backgrounds, were obtained to facilitate the analysis of the function of the gene. Deletion of the two alleles of the MKC1 gene gave rise to viable cells that grew at 28 and 37 degrees C but, nevertheless, displayed a variety of phenotypic traits under more stringent conditions. These included a low growth yield and a loss of viability in cultures grown at 42 degrees C, a high sensitivity to thermal shocks at 55 degrees C, an enhanced susceptibility to caffeine that was osmotically remediable, and the formation of a weak cell wall with a very low resistance to complex lytic enzyme preparations. The analysis of the functions downstream of the MKC1 gene should contribute to understanding of the connection of growth and morphogenesis in pathogenic fungi.


2008 ◽  
Vol 19 (7) ◽  
pp. 2818-2829 ◽  
Author(s):  
Ole Valente Mortensen ◽  
Mads Breum Larsen ◽  
Balakrishna M. Prasad ◽  
Susan G. Amara

The antidepressant and cocaine sensitive plasma membrane monoamine transporters are the primary mechanism for clearance of their respective neurotransmitters and serve a pivotal role in limiting monoamine neurotransmission. To identify molecules in pathways that regulate dopamine transporter (DAT) internalization, we used a genetic complementation screen in Xenopus oocytes to identify a mitogen-activated protein (MAP) kinase phosphatase, MKP3/Pyst1/DUSP6, as a molecule that inhibits protein kinase C–induced (PKC) internalization of transporters, resulting in enhanced DAT activity. The involvement of MKP3 in DAT internalization was verified using both overexpression and shRNA knockdown strategies in mammalian cell models including a dopaminergic cell line. Although the isolation of MKP3 implies a role for MAP kinases in DAT internalization, MAP kinase inhibitors have no effect on internalization. Moreover, PKC-dependent down-regulation of DAT does not correlate with the phosphorylation state of several well-studied MAP kinases (ERK1/2, p38, and SAPK/JNK). We also show that MKP3 does not regulate PKC-induced ubiquitylation of DAT but acts at a more downstream step to stabilize DAT at the cell surface by blocking dynamin-dependent internalization and delaying the targeting of DAT for degradation. These results indicate that MKP3 can act to enhance DAT function and identifies MKP3 as a phosphatase involved in regulating dynamin-dependent endocytosis.


1997 ◽  
Vol 137 (2) ◽  
pp. 433-443 ◽  
Author(s):  
Xiao Min Wang ◽  
Ye Zhai ◽  
James E. Ferrell

The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole—the chromosomes decondensed and the nuclear envelope re-formed—whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.


1993 ◽  
Vol 90 (23) ◽  
pp. 10952-10956 ◽  
Author(s):  
R H Chen ◽  
C Abate ◽  
J Blenis

Phosphorylation of the C terminus of c-Fos has been implicated in serum response element-mediated repression of c-fos transcription after its induction by serum growth factors. The growth-regulated enzymes responsible for this phosphorylation in early G1 phase of the cell cycle and the sites of phosphorylation have not been identified. We now provide evidence that two growth-regulated, nucleus- and cytoplasm-localized protein kinases, 90-kDa ribosomal S6 kinase (RSK) and mitogen-activated protein kinase (MAP kinase), contribute to the serum-induced phosphorylation of c-Fos. The major phosphopeptides derived from biosynthetically labeled c-Fos correspond to phosphopeptides generated after phosphorylation of c-Fos in vitro with both RSK and MAP kinase. The phosphorylation sites identified for RSK (Ser-362) and MAP kinase (Ser-374) are in the transrepression domain. Cooperative phosphorylation at these sites by both enzymes was observed in vitro and reflected in vivo by the predominance of the peptide phosphorylated on both sites, as opposed to singly phosphorylated peptides. This study suggests a role for nuclear RSK and MAP kinase in modulating newly synthesized c-Fos phosphorylation and downstream signaling.


1993 ◽  
Vol 13 (8) ◽  
pp. 4539-4548 ◽  
Author(s):  
J Wu ◽  
J K Harrison ◽  
P Dent ◽  
K R Lynch ◽  
M J Weber ◽  
...  

Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases activated by dual phosphorylation on threonine and tyrosine residues. A MAP kinase kinase (MKK1 or MEK1) has been identified as a dual-specificity protein kinase that is sufficient to phosphorylate MAP kinases p42mapk and p44mapk on the regulatory threonine and tyrosine residues. Because of the multiplicity of MAP kinase isoforms and the diverse circumstances and agonists leading to their activation, we thought it unlikely that a single MKK could accommodate this complexity. Indeed, two protein bands with MKK activity have previously been identified after renaturation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We now report the molecular cloning and characterization of a second rat MAP kinase kinase cDNA, MKK2. MKK2 cDNA contains an open reading frame encoding a protein of 400 amino acids, 7 residues longer than MKK1 (MEK1). The amino acid sequence of MKK2 is 81% identical to that of MKK1, but nucleotide sequence differences occur throughout the aligned MKK2 and MKK1 cDNAs, indicating that MKK2 is the product of a distinct gene. MKK1 and MKK2 mRNAs are expressed differently in rat tissues. Both cDNAs when expressed in COS cells displayed the ability to phosphorylate and activate p42mapk and p44mapk, both MKK1 and MKK2 were activated in vivo in response to serum, and both could be phosphorylated and activated by the v-Raf protein in vitro. However, differences between MKK1 and MKK2 in sites of phosphorylation by proline-directed protein kinases predict differences in feedback regulation.


1999 ◽  
Vol 277 (2) ◽  
pp. L282-L291 ◽  
Author(s):  
Sheu-Ling Lee ◽  
Wei-Wei Wang ◽  
Geraldine A. Finlay ◽  
Barry L. Fanburg

Our previous studies have shown that, through an active transport process, serotonin (5-HT) rapidly elevates[Formula: see text] formation, stimulates protein phosphorylation, and enhances proliferation of bovine pulmonary artery smooth muscle cells (SMCs). We presently show that 1 μM 5-HT also rapidly elevates phosphorylation and activation of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK) 1 and ERK2 of SMCs, and the enhanced phosphorylation is blocked by the antioxidants Tiron, N-acetyl-l-cysteine (NAC), and Ginkgo biloba extract. Inhibition of MAP kinase with PD-98059 failed to block enhanced[Formula: see text] formation by 5-HT. Chinese hamster lung fibroblasts (CCL-39 cells), which demonstrate both 5-HT transporter and receptor activity, showed a similar response to 5-HT (i.e., enhanced mitogenesis, [Formula: see text]formation, and ERK1 and ERK2 phosphorylation and activation). Unlike SMCs, they also responded to 5-HT receptor agonists. We conclude that downstream signaling of MAP kinase is a generalized cellular response to 5-HT that occurs secondary to[Formula: see text] formation and may be initiated by either the 5-HT transporter or receptor depending on the cell type.


2000 ◽  
Vol 11 (6) ◽  
pp. 1026-1032
Author(s):  
MILITZA KIROYCHEVA ◽  
FAYYAZ AHMED ◽  
GILLIAN M. ANTHONY ◽  
CSABA SZABO ◽  
GARRY J. SOUTHAN ◽  
...  

Abstract. Previous studies in βs sickle cell mice demonstrated renal immunostaining for nitrotyrosine, which is putative evidence of peroxynitrite (ONOO-) formation. ONOO- is known to nitrate tyrosine residues of various enzymes, thereby interfering with phosphorylation and inactivating them. The present study examined the state of phosphorylation of mitogen-activated protein (MAP) kinase signal transduction enzymes, i.e., p38, c-Jun NH2-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Western blot performed with antibodies directed against specific phosphorylated threonine/tyrosine residues of these enzymes demonstrated reduced phosphorylation of renal p38 and a trend toward reduced phosphorylation of ERK. In contrast, phosphorylation of renal JNK was markedly increased compared with normal mice. The abundance of MAP kinase phosphatase-1 (MKP-1), a key upstream enzyme that modulates phosphorylation of MAP kinases, was not different in βsversus normal mice. To determine whether nitration of tyrosine by ONOO- was responsible for reduced phosphorylation of p38 and ERK, mercaptoethylguanidine (MEG), a compound known to reduce inducible isoform of nitric oxide synthase activity and to scavenge ONOO-, was administered to βs mice for 5 d. MEG was found to restore phosphorylation of p38 and ERK toward normal levels. These observations provide evidence that ONOO- (or closely related reaction products of NO) contributes to dephosphorylation of p38 and ERK, and presumably reduces activity of these enzymes. The increased phosphorylation of JNK, which suggests activation of this signaling pathway by extracellular stress signals, may play a role in apoptosis in the kidneys of these mice. The changes in phosphorylation of MAP kinase pathways found in this study could have important consequences for regulation of nuclear transcription factors, and thus renal function and pathology in sickle cell kidneys.


Sign in / Sign up

Export Citation Format

Share Document