Electromagnetic (self-) interactions in relativistic Schrödinger theory

2001 ◽  
Vol 79 (6) ◽  
pp. 879-906
Author(s):  
M Mattes ◽  
S Rupp ◽  
M Sorg

The Relativistic Schrödinger Theory (RST) is applied to a system of N particles with electromagnetic interactions. The gauge group is U(1) × U(1)... × U(1). By exploiting the mathematical structure of fibre bundles, the energy-momentum content of the gauge field can be defined in such a way that no infinite self-energy of point charges can arise. However, the picture of classical point particles becomes insufficient in any case in view of the exchange and overlap effects occurring in RST. The presence of overlap currents seems to be necessary to remedy certain pathological features of the classical point-particle theories. PACS Nos.: 03.65Pm, 03.65Ge, 03.65Ta

1960 ◽  
Vol 4 (7) ◽  
pp. 375-377 ◽  
Author(s):  
R. Arnowitt ◽  
S. Deser ◽  
C. W. Misner

1997 ◽  
Vol 11 (01n02) ◽  
pp. 127-131 ◽  
Author(s):  
Michael K.-H. Kiessling

This paper is concerned with a curious gap in a string of exactly solvable models, a gap that is suggestively related to a completely integrable nonlinear PDE in d=2 known as Liouville's equation. This PDE emerges in a limit N→∞ from the equilibrium statistical mechanics of classical point particles with gravitational interactions (SMGI) in dimension d=2 which, accordingly, is an exactly solvable continuum model in this limit. Interestingly, in d=1 and all d>2, the SMGI can be, and partly has been, exactly evaluated for all N≤∞. This entitles one to suspect that the SMGI for d=2 is likewise exactly solvable for N>∞, but currently this is an unproven hypothesis. If this conjecture can be answered in the affirmative, spin-offs in various areas associated with Liouville's equation, such as vortex gases, superfluidity, random matrices, and string theory can be expected.


2012 ◽  
Vol 27 (23) ◽  
pp. 1250130 ◽  
Author(s):  
P. AGUILAR ◽  
Y. BONDER ◽  
C. CHRYSSOMALAKOS ◽  
D. SUDARSKY

Traditional geometry employs idealized concepts like that of a point or a curve, the operational definition of which relies on the availability of classical point particles as probes. Real, physical objects are quantum in nature though, leading us to consider the implications of using realistic probes in defining an effective spacetime geometry. As an example, we consider de Sitter spacetime and employ the centroid of various composite probes to obtain its effective sectional curvature, which is found to depend on the probe's internal energy, spatial extension, and spin. Possible refinements of our approach are pointed out and remarks are made on the relevance of our results to the quest for a quantum theory of gravity.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter discusses the kinematics of point particles undergoing any type of motion. It introduces the concept of proper time—the geometric representation of the time measured by an accelerated clock. It also describes a world line, which represents the motion of a material point or point particle P, that is, an object whose spatial extent and internal structure can be ignored. The chapter then considers the interpretation of the curvilinear abscissa, which by definition measures the length of the world line L representing the motion of the point particle P. Next, the chapter discusses a mathematical result popularized by Paul Langevin in the 1920s, the so-called ‘Langevin twins’ which revealed a paradoxical result. Finally, the transformation of velocities and accelerations is discussed.


1998 ◽  
Vol 12 (16n17) ◽  
pp. 1673-1692 ◽  
Author(s):  
Peter Kopietz

We calculate the self-energy of two-dimensional fermions that are coupled to transverse gauge fields, taking two-loop corrections into account. Given a bare gauge field propagator that diverges for small momentum transfers q as 1/qη, 1<η≤ 2, the fermionic self-energy without vertex corrections vanishes for small frequencies ω as Σ(ω)∝ ωγ with γ=2/(1+η)<1. We show that inclusion of the leading radiative correction to the fermion-gauge field vertex leads to Σ(ω)∝ωγ [1-aη ln (ω0/ω)], where aη is a positive numerical constant and ω0 is some finite energy scale. The negative logarithmic correction is consistent with the scenario that higher order vertex corrections push the exponent γ to larger values.


2019 ◽  
Vol 100 (5) ◽  
Author(s):  
K. Kajantie ◽  
Larry D. McLerran ◽  
Risto Paatelainen

Sign in / Sign up

Export Citation Format

Share Document