Tomographic retrieval of the oxygen infrared atmospheric band with the OSIRIS infrared imager

2004 ◽  
Vol 82 (7) ◽  
pp. 501-515 ◽  
Author(s):  
D A Degenstein ◽  
E J Llewellyn ◽  
N D Lloyd

The infrared imager (IRI) component of the optical spectrograph and infrared imager system (OSIRIS) onboard the Odin spacecraft provides a set of line-of-sight brightness measurements of the oxygen infrared atmospheric (OIRA) band. This set of measurements is unique in the fact that they are ideal inputs to a two-dimensional retrieval scheme that accurately recovers the volume emission rate of the OIRA band. The retrieval is done simultaneously in two dimensions, the angle along the satellite track and the distance from the centre of the Earth. The latter is easily converted to altitude above the surface of the Earth. In this work, we present the measurement set, the retrieval technique, and some preliminary results. We clearly demonstrate that the OSIRIS infrared imager provides maps of the OIRA band volume emission rate with unprecedented spatial resolution. PACS Nos.: 07.05.Pj, 07.60.Dq, 94.10.Fa, 94.10.Gb, 94.10.Rk

2021 ◽  
Vol 13 (11) ◽  
pp. 5115-5126
Author(s):  
Anqi Li ◽  
Chris Z. Roth ◽  
Adam E. Bourassa ◽  
Douglas A. Degenstein ◽  
Kristell Pérot ◽  
...  

Abstract. The OH airglow has been used to investigate the chemistry and dynamics of the mesosphere and the lower thermosphere (MLT) for a long time. The infrared imager (IRI) aboard the Odin satellite has been recording the night-time 1.53 µm OH (3-1) emission for more than 15 years (2001–2015), and we have recently processed the complete data set. The newly derived data products contain the volume emission rate profiles and the Gaussian-approximated layer height, thickness, peak intensity and zenith intensity, and their corresponding error estimates. In this study, we describe the retrieval steps for these data products. We also provide data screening recommendations. The monthly zonal averages depict the well-known annual oscillation and semi-annual oscillation signatures, which demonstrate the fidelity of the data set (https://doi.org/10.5281/zenodo.4746506, Li et al., 2021). The uniqueness of this Odin IRI OH long-term data set makes it valuable for studying various topics, for instance, the sudden stratospheric warming events in the polar regions and solar cycle influences on the MLT.


2021 ◽  
Author(s):  
Anqi Li ◽  
Chris Z. Roth ◽  
Adam E. Bourassa ◽  
Douglas A. Degenstein ◽  
Kristell Pérot ◽  
...  

Abstract. The OH airglow has been used to investigate the chemistry and dynamics of the mesosphere and the lower thermo-sphere (MLT) for a long time. The infrared imager (IRI) aboard the Odin satellite has been recording the nighttime 1.53 μm OH (3-1) emission for more than 15 years (2001–2015) and we have recently processed the complete data set. The newly derived data products contain the volume emission rate profiles and the Gaussian approximated layer height, thickness, peak intensity and zenith intensity, and their corresponding error estimates. In this study, we describe the retrieval steps of these data products. We also provide data screening recommendations. The monthly zonal averages depict the well known annual oscillation and semi-annual oscillation signatures, which demonstrate the fidelity of the data set (https://doi.org/10.5281/zenodo.4746506, Li et al. (2021)). The uniqueness of this Odin-IRI OH long-term data set makes it valuable for studying various topics, for instance, the sudden stratospheric warming events in the polar regions and solar cycle influences on the MLT.


2021 ◽  
Author(s):  
Benoit Hubert ◽  
Guy Munhoven ◽  
Youssef Moulane ◽  
Damien Hutsemekers ◽  
Jean Manfroid ◽  
...  

<p>Line-of-sight integration of emissions from planetary and cometary atmospheres is the Abel transform of the emission rate, under the spherical symmetry assumption. Indefinite integrals constructed from the Abel transform integral are useful for implementing remote sensing data analysis methods, such as the numerical inverse Abel transform giving the volume emission rate compatible with the observation. We obtain analytical expressions based on a suitable, non-alternating, series development to compute those indefinite integrals. We establish expressions allowing absolute accuracy control of the convergence of these series depending on the number of terms involved. We compare the analytical method with numerical computation techniques, which are found to be sufficiently accurate as well. Inverse Abel transform fitting is then tested in order to establish that the expected emission rate profiles can be retrieved from the observation of both planetary and cometary atmospheres. We show that the method is robust, especially when Tikhonov regularization is included, although it must be carefully tuned when the observation varies across many orders of magnitude. A first application is conducted over observation of comet 46P/Wirtanen, showing some variability possibly attributable to an evolution of the contamination by dust and icy grains. A second application is considered to deduce the 557.7 nm volume emission rate profile of the metastable oxygen atom in the upper atmosphere of planet Mars.</p>


2018 ◽  
pp. 14-18
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

To simulate echoes from the earth’s surface in the low flight mode, it is necessary to reproduce reliably the delayed reflected sounding signal of the radar in real time. For this, it is necessary to be able to calculate accurately and quickly the dependence of the distance to the object being measured from the angular position of the line of sight of the radar station. Obviously, the simplest expressions for calculating the range can be obtained for a segment or a plane. In the text of the article, analytical expressions for the calculation of range for two-dimensional and three-dimensional cases are obtained. Methods of statistical physics, vector algebra, and the theory of the radar of extended objects were used. Since the calculation of the dependence of the range of the object to the target from the angular position of the line of sight is carried out on the analytical expressions found in the paper, the result obtained is accurate, and due to the relative simplicity of the expressions obtained, the calculation does not require much time.


Author(s):  
Thomas K. Ogorzalek

This theoretical chapter develops the argument that the conditions of cities—large, densely populated, heterogeneous communities—generate distinctive governance demands supporting (1) market interventions and (2) group pluralism. Together, these positions constitute the two dimensions of progressive liberalism. Because of the nature of federalism, such policies are often best pursued at higher levels of government, which means that cities must present a united front in support of city-friendly politics. Such unity is far from assured on the national level, however, because of deep divisions between and within cities that undermine cohesive representation. Strategies for success are enhanced by local institutions of horizontal integration developed to address the governance demands of urbanicity, the effects of which are felt both locally and nationally in the development of cohesive city delegations and a unified urban political order capable of contending with other interests and geographical constituencies in national politics.


2021 ◽  
Vol 182 (3) ◽  
Author(s):  
Gernot Münster ◽  
Manuel Cañizares Guerrero

AbstractRoughening of interfaces implies the divergence of the interface width w with the system size L. For two-dimensional systems the divergence of $$w^2$$ w 2 is linear in L. In the framework of a detailed capillary wave approximation and of statistical field theory we derive an expression for the asymptotic behaviour of $$w^2$$ w 2 , which differs from results in the literature. It is confirmed by Monte Carlo simulations.


2020 ◽  
Vol 146 ◽  
pp. 03004
Author(s):  
Douglas Ruth

The most influential parameter on the behavior of two-component flow in porous media is “wettability”. When wettability is being characterized, the most frequently used parameter is the “contact angle”. When a fluid-drop is placed on a solid surface, in the presence of a second, surrounding fluid, the fluid-fluid surface contacts the solid-surface at an angle that is typically measured through the fluid-drop. If this angle is less than 90°, the fluid in the drop is said to “wet” the surface. If this angle is greater than 90°, the surrounding fluid is said to “wet” the surface. This definition is universally accepted and appears to be scientifically justifiable, at least for a static situation where the solid surface is horizontal. Recently, this concept has been extended to characterize wettability in non-static situations using high-resolution, two-dimensional digital images of multi-component systems. Using simple thought experiments and published experimental results, many of them decades old, it will be demonstrated that contact angles are not primary parameters – their values depend on many other parameters. Using these arguments, it will be demonstrated that contact angles are not the cause of wettability behavior but the effect of wettability behavior and other parameters. The result of this is that the contact angle cannot be used as a primary indicator of wettability except in very restricted situations. Furthermore, it will be demonstrated that even for the simple case of a capillary interface in a vertical tube, attempting to use simply a two-dimensional image to determine the contact angle can result in a wide range of measured values. This observation is consistent with some published experimental results. It follows that contact angles measured in two-dimensions cannot be trusted to provide accurate values and these values should not be used to characterize the wettability of the system.


2016 ◽  
Vol 24 (3) ◽  
Author(s):  
Oleg Y. Imanuvilov ◽  
Masahiro Yamamoto

AbstractWe prove the global uniqueness in determination of the conductivity, the permeability and the permittivity of the two-dimensional Maxwell equations by the partial Dirichlet-to-Neumann map limited to an arbitrary subboundary.


Author(s):  
D. G. Neal

AbstractThis paper describes new detailed Monte Carlo investigations into bond and site percolation problems on the set of eleven regular and semi-regular (Archimedean) lattices in two dimensions.


Sign in / Sign up

Export Citation Format

Share Document