scholarly journals Is contact angle a cause or an effect? – A cautionary tale

2020 ◽  
Vol 146 ◽  
pp. 03004
Author(s):  
Douglas Ruth

The most influential parameter on the behavior of two-component flow in porous media is “wettability”. When wettability is being characterized, the most frequently used parameter is the “contact angle”. When a fluid-drop is placed on a solid surface, in the presence of a second, surrounding fluid, the fluid-fluid surface contacts the solid-surface at an angle that is typically measured through the fluid-drop. If this angle is less than 90°, the fluid in the drop is said to “wet” the surface. If this angle is greater than 90°, the surrounding fluid is said to “wet” the surface. This definition is universally accepted and appears to be scientifically justifiable, at least for a static situation where the solid surface is horizontal. Recently, this concept has been extended to characterize wettability in non-static situations using high-resolution, two-dimensional digital images of multi-component systems. Using simple thought experiments and published experimental results, many of them decades old, it will be demonstrated that contact angles are not primary parameters – their values depend on many other parameters. Using these arguments, it will be demonstrated that contact angles are not the cause of wettability behavior but the effect of wettability behavior and other parameters. The result of this is that the contact angle cannot be used as a primary indicator of wettability except in very restricted situations. Furthermore, it will be demonstrated that even for the simple case of a capillary interface in a vertical tube, attempting to use simply a two-dimensional image to determine the contact angle can result in a wide range of measured values. This observation is consistent with some published experimental results. It follows that contact angles measured in two-dimensions cannot be trusted to provide accurate values and these values should not be used to characterize the wettability of the system.

1990 ◽  
Vol 217 ◽  
pp. 263-298 ◽  
Author(s):  
J. A. Stoos ◽  
L. G. Leal

Numerical solutions, obtained via the boundary-integral technique, are used to consider the effect of a linear axisymmetric straining flow on the existence of steady-state configurations in which a neutrally buoyant spherical particle straddles a gas–liquid interface. The problem is directly applicable to predictions of the stability of particle capture in flotation processes, and is also of interest in the context of contact angle and surface tension measurements. A primary goal of the present study is a determination of the critical capillary number, Cac, beyond which an initially captured particle is pulled from the interface by the flow, and the dependence of Cac on the equilibrium contact angle θc. We also present equilibrium configurations for a wide range of contact angles and subcritical capillary numbers.


1990 ◽  
Vol 112 (3) ◽  
pp. 289-295 ◽  
Author(s):  
K. Katoh ◽  
H. Fujita ◽  
H. Sasaki

Macroscopic wetting behavior is investigated theoretically from a thermodynamic viewpoint. The axisymmetric liquid meniscus formed under a conical solid surface is chosen as the subject of the theoretical analysis. Using the meniscus configuration obtained by the Laplace equation, the total free energy of the system is calculated. In the case of the half vertical angle of the cone φ = 90 deg (horizontal plate), the system shows thermodynamic instability when the meniscus attaches to the solid surface at the contact angle. This result, unlike the conventional view, agrees well with the practical wetting behavior observed in this study. On the other hand, when 0 deg < φ < 90 deg, the system shows thermodynamic stability at the contact angle. However, when the solid cone is held at a position higher than the critical height from a stationary liquid surface, the system becomes unstable. It is possible to measure the contact angle easily using this unstable phenomenon.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 787 ◽  
Author(s):  
Federico Veronesi ◽  
Giulio Boveri ◽  
Mariarosa Raimondo

The search for surfaces with non-wetting behavior towards water and low-surface tension liquids affects a wide range of industries. Surface wetting is regulated by morphological and chemical features interacting with liquid phases under different ambient conditions. Most of the approaches to the fabrication of liquid-repellent surfaces are inspired by living organisms and require the fabrication of hierarchically organized structures, coupled with low surface energy chemical composition. This paper deals with the design of amphiphobic metals (AM) and alloys by deposition of nano-oxides suspensions in alcoholic or aqueous media, coupled with perfluorinated compounds and optional infused lubricant liquids resulting in, respectively, solid–liquid–air and solid–liquid–liquid working interfaces. Nanostructured organic/inorganic hybrid coatings with contact angles against water above 170°, contact angle with n-hexadecane (surface tension γ = 27 mN/m at 20 °C) in the 140–150° range and contact angle hysteresis lower than 5° have been produced. A full characterization of surface chemistry has been undertaken by X-ray photoelectron spectroscopy (XPS) analyses, while field-emission scanning electron microscope (FE-SEM) observations allowed the estimation of coatings thicknesses (300–400 nm) and their morphological features. The durability of fabricated amphiphobic surfaces was also assessed with a wide range of tests that showed their remarkable resistance to chemically aggressive environments, mechanical stresses and ultraviolet (UV) radiation. Moreover, this work analyzes the behavior of amphiphobic surfaces in terms of anti-soiling, snow-repellent and friction-reduction properties—all originated from their non-wetting behavior. The achieved results make AM materials viable solutions to be applied in different sectors answering several and pressing technical needs.


2016 ◽  
Vol 113 (37) ◽  
pp. 10251-10256 ◽  
Author(s):  
Benzhong Zhao ◽  
Christopher W. MacMinn ◽  
Ruben Juanes

Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid–fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate’s affinity to the invading fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms—cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)—responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge—from pore filling to postbridging—are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions.


2010 ◽  
Vol 647 ◽  
pp. 125-142 ◽  
Author(s):  
J. M. GOMBA ◽  
G. M. HOMSY

We study the thermocapillary migration of two-dimensional droplets of partially wetting liquids on a non-uniform heated substrate. An equation for the thickness profile of the droplet is derived by employing lubrication approximations. The model includes the effect of a non-zero contact angle introduced through a disjoining–conjoining pressure term. Instead of assuming a fixed shape for the droplet, as in previous works, here we allow the droplet to change its profile with time. We identify and describe three different regimes of behaviour. For small contact angles, the droplet spreads into a long film profile with a capillary ridge near the leading edge, a behaviour that resembles the experiments on Marangoni films reported by Ludviksson & Lightfoot (Am. Inst. Chem. Eng. J., vol. 17, 1971, pp. 1166). For large contact angles, the droplet moves as a single entity, weakly distorted from its static shape. This regime is the usual one reported in experiments on thermocapillary migration of droplets. We also show some intriguing morphologies that appear in the transition between these two regimes. The occurrence of these three regimes and their dependence on various parameters is analysed.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Yong-Ming Liu ◽  
Zi-Qing Wu ◽  
Sheng Bao ◽  
Wei-Hong Guo ◽  
Da-Wei Li ◽  
...  

The contact angle, as a vital measured parameter of wettability of material surface, has long been in dispute whether it is affected by gravity. Herein, we measured the advancing and receding contact angles on extremely low contact angle hysteresis surfaces under different gravities (1-8G) and found that both of them decrease with the increase of the gravity. The underlying mechanism is revealed to be the contact angle hysteresis and the deformation of the liquid-vapor interface away from the solid surface caused by gradient distribution of the hydrostatic pressure. The real contact angle is not affected by gravity and cannot measured by an optical method. The measured apparent contact angles are angles of inclination of the liquid-vapor interface away from the solid surface. Furthermore, a new equation is proposed based on the balance of forces acting on the three-phase contact region, which quantitatively reveals the relation of the apparent contact angle with the interfacial tensions and gravity. This finding can provide new horizons for solving the debate on whether gravity affects the contact angle and may be useful for the accurate measurement of the contact angle and the development of a new contact angle measurement system.


1995 ◽  
Vol 117 (2) ◽  
pp. 303-308 ◽  
Author(s):  
Kenji Katoh ◽  
Hideomi Fujita ◽  
Hideharu Sasaki

The purpose of this study is to investigate macroscopic wetting behavior and to verify the validity of the assumption made in the analysis of the preceding report that the complicated effects of the microscopic structures of the solid surface such as roughness or heterogeneity on the macroscopic wetting behavior are simply represented by the values of the apparent contact angles. The unstable phenomenon of a two-dimensional meniscus under a horizontal plate, in which the meniscus falls spontaneously at a certain height of the plate, is considered theoretically from a thermodynamic viewpoint. The results of the analysis based on the above assumption agree with those by an analysis in which the effect of microscopic structures of the solid surface, such as roughness and heterogeneity, are taken into consideration. Therefore, the validity of the assumption made in the preceding report is verified.


2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Moataz Abdulhafez ◽  
Angela J. McComb ◽  
Mostafa Bedewy

Abstract The growth of laser-induced nanocarbons, referred to here as laser-induced nanocarbon (LINC) for short, directly on polymeric surfaces is a promising route toward surface engineering of commercial polymers. This paper aims to demonstrate how this new approach can enable achieving varied surface properties based on tuning the nanostructured morphology of the formed graphitic material on commercial polyimide (Kapton) films. We elucidate the effects of tuning laser processing parameters on the achieved nanoscale morphology and the resulting surface hydrophobicity or hydrophilicity. Our results show that by varying lasing power, rastering speed, laser spot size, and line-to-line gap sizes, a wide range of water contact angles are possible, i.e., from below 20 deg to above 110 deg. Combining water contact angle measurements from an optical tensiometer with LINC surface characterization using optical microscopy, electron microscopy, and Raman spectroscopy enables building the process–structur–property relationship. Our findings reveal that both the value of contact angle and the anisotropic wetting behavior of LINC on polyimide are dependent on their hierarchical surface nanostructure which ranges from isotropic nanoporous morphology to fibrous morphology. Results also show that increasing gap sizes lead to an increase in contact angles and thus an increase in the hydrophobicity of the surface. Hence, our work highlight the potential of this approach for manufacturing flexible devices with tailored surfaces.


1991 ◽  
Vol 54 (3) ◽  
pp. 232-235 ◽  
Author(s):  
JOSEPH MCGUIRE ◽  
JIANGUO YANG

The effect of drop volume on the equilibrium contact angle, used in evaluation of food contact surface properties, was measured for liquids exhibiting both polar and nonpolar character on six different materials. Drop volumes used ranged from 2 to 40 μl. Contact angles were observed to increase with increasing drop volume in a range below some limiting value, identified as the critical drop volume (CDV). The CDV varied among materials and is explained with reference to surface energetic heterogeneities exhibited by each type of solid surface.


1995 ◽  
Vol 294 ◽  
pp. 209-230 ◽  
Author(s):  
Marc K. Smith

A two-dimensional liquid droplet placed on a non-uniformly heated solid surface will move towards the region of colder temperatures if the temperature gradient in the solid surface is large enough. Such behaviour is analysed for a thin viscous droplet using lubrication theory to develop an evolution equation for the shape of the droplet. For the small mobility capillary numbers examined in this work, the contact-line motion is controlled by a dynamic relationship posed between the contact-line speed and the apparent contact angle. Results are obtained numerically and also approximately using a perturbation technique for small heating. The initial spreading or shrinking of the droplet when placed on the heated solid is biased toward the direction of decreasing temperature on the solid. Possible steady-state responses are either a motionless droplet or one moving at a constant velocity down the temperature gradient without change in shape. These behaviours are the result of a thermocapillary recirculation cell inside the droplet that distorts the free surface and alters the apparent contact angles. This change in the apparent contact angles then modifies the contact-line speed.


Sign in / Sign up

Export Citation Format

Share Document