Onset of convection in a viscoelastic-fluid-saturated sparselypacked porous layer using a thermal nonequilibrium model

2006 ◽  
Vol 84 (11) ◽  
pp. 973-990 ◽  
Author(s):  
I S Shivakumara ◽  
M S Malashetty ◽  
K B Chavaraddi

A linear stability analysis is carried out to study viscoelastic fluid convection in a sparsely packed horizontal porous layer heated from below. The viscoelastic fluid flow in the porous medium is modeled by using a modified Brinkman–Lapwood-extended Darcy model with the fluid viscosity different from the effective viscosity, which accounts for the viscoelastic properties and frictiondue to macroscopic shear. Besides, a two-field model for temperature each representing the solid and fluid phases separately is employed. The conditions for the occurrence of direct and Hopf bifurcations of the thermal convective instability are obtained analytically. It is shown that Hopf bifurcation occurs only if the retardation to relaxation-time ratio, Λ, is less than unity and the elasticity parameter, Γ, exceeds a threshold. Further, the effects of the viscoelastic parameters and the thermal nonequilibrium on the onset of convection are analyzed in detail.PACS No.: 47.55.–pb

1991 ◽  
Vol 231 ◽  
pp. 113-133 ◽  
Author(s):  
Falin Chen

We implement a linear stability analysis of the convective instability in superposed horizontal fluid and porous layers with throughflow in the vertical direction. It is found that in such a physical configuration both stabilizing and destabilizing factors due to vertical throughflow can be enhanced so that a more precise control of the buoyantly driven instability in either a fluid or a porous layer is possible. For ζ = 0.1 (ζ, the depth ratio, defined as the ratio of the fluid-layer depth to the porous-layer depth), the onset of convection occurs in both fluid and porous layers, the relation between the critical Rayleigh number Rcm and the throughflow strength γm is linear and the Prandtl-number (Prm) effect is insignificant. For ζ ≥ 0.2, the onset of convection is largely confined to the fluid layer, and the relation becomes Rcm ∼ γ2m for most of the cases considered except for Prm = 0.1 with large positive γm where the relation Rcm ∼ γ3m holds. The destabilizing mechanisms proposed by Nield (1987 a, b) due to throughflow are confirmed by the numerical results if considered from the viewpoint of the whole system. Nevertheless, from the viewpoint of each single layer, a different explanation can be obtained.


1990 ◽  
Vol 68 (12) ◽  
pp. 1446-1453 ◽  
Author(s):  
N. Rudraiah ◽  
P. V. Radhadevi ◽  
P. N. Kaloni

The linear stability of a viscoelastic fluid-saturated sparsely packed porous layer heated from below is studied analytically using the Darcy–Brinkman–Jeffreys model with different boundary combinations. The Galerkin technique is employed to determine the criterion for the onset of oscillatory convection. The effects of the viscoelastic parameters, the Prandtl number, and the porous parameter on the critical Rayleigh number, the wave number, and the frequency are analyzed. The results are compared with those obtained for both a Darcy–Jeffrey fluid and a Maxwell fluid. It is shown that under certain conditions for the viscoelastic parameters, the flow is overstable. The possibility of the occurrence of bifurcation is also discussed.


Author(s):  
Florinda Capone ◽  
Maurizio Gentile ◽  
Jacopo A. Gianfrani

Abstract The onset of thermal convection in an anisotropic horizontal porous layer heated from below and rotating about vertical axis, under local thermal non-equilibrium hypothesis is studied. Linear and nonlinear stability analysis of the conduction solution is performed. Coincidence between the linear instability and the global nonlinear stability thresholds with respect to the L2—norm is proved. Article Highlights A necessary and sufficient condition for the onset of convection in a rotating anisotropic porous layer has been obtained. It has been proved that convection can occur only through a steady motion. A detailed proof is reported thoroughly. Numerical analysis shows that permeability promotes convection, while thermal conductivities and rotation stabilize conduction.


Sign in / Sign up

Export Citation Format

Share Document