From Schwarzschild to Kerr under de Sitter background due to blackhole tunnelling

2007 ◽  
Vol 85 (8) ◽  
pp. 863-868 ◽  
Author(s):  
K Xiao ◽  
W Liu

When a particle with angular momentum tunnels across the event horizon of Schwarzschild–de Sitter black hole, the black hole will change into a Kerr–de Sitter one. Considering Hawking radiation as a process of quantum tunnelling near a black-hole horizon, the emission rate of the particles with angular momentum is calculated under energy and angular momentum conservation, and the result is consistent with an underlying unitary theory.PACS Nos.: 97.60.Lf, 04.70.Dy, 03.65.Pm

2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2018 ◽  
Vol 37 ◽  
pp. 99-109
Author(s):  
M Ilias Hossain

We have explored Hawking non-thermal and purely thermal radiations of Kerr-anti-de Sitter (KAdS) black hole using massive particles tunneling method by taking into account the space time background as dynamical, energy and angular momentum as conserved incorporating the selfgravitation effect of the emitted particles. The results we have obtained for KAdS black hole have shown that the tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum and also the obtaining results for KAdS black hole are accordant with Parikh and Wilczek’s opinion and gives a correction to the Hawking radiation of KAdS black hole.GANIT J. Bangladesh Math. Soc.Vol. 37 (2017) 99-109


2012 ◽  
Vol 27 (04) ◽  
pp. 1250010
Author(s):  
BAI SHENG LIU ◽  
JING YI ZHANG

In the paper, the tunneling framework is applied to calculate the local horizons of Vaidya–de Sitter black holes and Vaidya–Bonner–de Sitter black holes. The researches show that the quantum ergosphere of a spherically symmetric black hole is identical with the potential barrier set by the tunneling process. The calculations also indicate that both the apparent horizons of the dynamic de Sitter black hole produce Hawking radiation. The conclusions can be applicable to either the charged or uncharged particles' Hawking radiation.


2013 ◽  
Vol 22 (09) ◽  
pp. 1350058 ◽  
Author(s):  
TRITOS NGAMPITIPAN ◽  
PETARPA BOONSERM

Semiclassical black holes emit radiation called Hawking radiation. Such radiation, as seen by an asymptotic observer far outside the black hole, differs from the original radiation near the horizon of the black hole by a redshift factor and the so-called "greybody factor." In this paper, we concentrate on the greybody factor; various bounds for the greybody factors of non-rotaging black holes are obtained, concentrating primarily on charged Reissner–Nordström (RN) and RN–de Sitter black holes. These bounds can be derived using a 2 × 2 transfer matrix formalism. It is found that the charges of black holes act as efficient barriers. Furthermore, adding extra dimensions to spacetime can shield Hawking radiation. Finally, it is also found that the cosmological constant can increase the emission rate of Hawking radiation.


2009 ◽  
Vol 18 (08) ◽  
pp. 1227-1241 ◽  
Author(s):  
G. E. VOLOVIK

We discuss why the tunneling picture does not necessarily lead to Hawking radiation from the de Sitter horizon. The experience with the condensed matter analogs of the event horizon suggests that the de Sitter vacuum is stable against Hawking radiation. On the other hand, the detector immersed in the de Sitter background will detect the radiation, which looks thermal, with the effective temperature twice as large as the Hawking temperature associated with the cosmological horizon.


2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.


2001 ◽  
Vol 16 (23) ◽  
pp. 3793-3803 ◽  
Author(s):  
WENBIAO LIU ◽  
ZHENG ZHAO

The brick-wall method put forward by 't Hooft has contributed a great deal to the understanding and calculating of the entropy of a black hole. However, there are some drawbacks in it such as little mass approximation, neglecting logarithm terms, and taking the term including L3 as a contribution of the vacuum surrounding the black hole. Moreover, the fundamental problem is why the entropy of scalar field or Dirac field surrounding a black hole is the entropy of the black hole itself. It is well known that the event horizon is the characteristic of a black hole. The entropy calculation of a black hole should be only related to its horizon. Due to this analysis, we improve the brick-wall model by taking that the entropy of a black hole is only contributed by a thin film near the event horizon. This improvement not only gives us a satisfied result, but also avoids the drawbacks in the original brick-wall method. It is found that there is an intrinsic relation between the event horizon and the entropy. We also calculate the entropy of Schwarzschild–de Sitter space–time via the improved method, which can hardly be resolved via the original model.


Sign in / Sign up

Export Citation Format

Share Document