scholarly journals THERMODYNAMICS OF CONSTANT CURVATURE BLACK HOLES THROUGH SEMICLASSICAL TUNNELING

2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.

2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2019 ◽  
Vol 59 (1) ◽  
Author(s):  
Gu-Qiang Li ◽  
Yan-Yi Ou ◽  
Ze-Tao Lin

The Hawking radiation of charged particles from black holes in the Hořava–Lifshitz (HL) gravity is investigated by using the Parikh–Wilczek (PW) method, and the emission rate is calculated. The emission spectrum is not purely thermal and is consistent with an underlying unitary theory. Some other characteristics exist for a HL gravity black hole. Assuming the conventional tunnelling rate associated with the change of entropy, the entropy of the HL gravity black hole is obtained. The entropy is not proportional to the horizon area because a logarithmic term exists. However, it complies with the first law of thermodynamics and is in accord with earlier results.


2020 ◽  
Vol 35 (28) ◽  
pp. 2050236
Author(s):  
Shiwei Zhou ◽  
Kui Xiao

Propagation of sound waves in a flowing fluid can be viewed as a minimally coupled massless scalar field propagating in curved spacetime. The analogue Hawking radiation from a spherically symmetric acoustic black hole and a (2 + 1)-dimensional rotating acoustic black hole are investigated respectively in Damour–Ruffini’s method. The emission rate and Hawking temperature are obtained, which are related to acoustic black holes parameter.


2008 ◽  
Vol 23 (07) ◽  
pp. 539-553 ◽  
Author(s):  
CHENG-ZHOU LIU ◽  
ZHENG ZHAO

Hawking radiation viewed as a semiclassical tunneling process of particles from the event horizon of general static black holes is investigated by taking the back-reaction of the emitted particles into account. In a general static spacetime, the emission rates of massless, massive and massive charged particles are computed respectively and the tunneling probabilities are obtained. Our results show that when energy and charge conservation are incorporated into the radiation process, the emission rate of the tunneling particles is related to changes of the Bekenstein-Hawking entropies of the black hole before and after the emission, thus it is consistent with an underlying unitary theory. The present results are obtained in a general way, no matter what the special static metric function is, and hence a generalization for the results found in the literature is given. Some remarks on the tunneling method are presented.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350037 ◽  
Author(s):  
R. TORRES ◽  
F. FAYOS ◽  
O. LORENTE-ESPÍN

We consider the emission of Hawking radiation by black holes as a consequence of a tunneling process. By requiring energy conservation in the derivation of the emission rate we get a well-known deviation from an exact thermal spectrum. A model that takes into account the implications of energy conservation, as well as the back-scattered radiation, is then constructed in order to describe the evolution of black holes as they evaporate. The evaporation process in this model is compared with the results in the standard "thermal" approximation. This allows us to point out the relevance that energy conservation might have in the last stages of black hole evaporation. We also comment about the possible implications of energy conservation in the information loss paradox.


2013 ◽  
Vol 22 (09) ◽  
pp. 1350058 ◽  
Author(s):  
TRITOS NGAMPITIPAN ◽  
PETARPA BOONSERM

Semiclassical black holes emit radiation called Hawking radiation. Such radiation, as seen by an asymptotic observer far outside the black hole, differs from the original radiation near the horizon of the black hole by a redshift factor and the so-called "greybody factor." In this paper, we concentrate on the greybody factor; various bounds for the greybody factors of non-rotaging black holes are obtained, concentrating primarily on charged Reissner–Nordström (RN) and RN–de Sitter black holes. These bounds can be derived using a 2 × 2 transfer matrix formalism. It is found that the charges of black holes act as efficient barriers. Furthermore, adding extra dimensions to spacetime can shield Hawking radiation. Finally, it is also found that the cosmological constant can increase the emission rate of Hawking radiation.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Xuanhua Wang ◽  
Ran Li ◽  
Jin Wang

Abstract We apply the recently proposed quantum extremal surface construction to calculate the Page curve of the eternal Reissner-Nordström black holes in four dimensions ignoring the backreaction and the greybody factor. Without the island, the entropy of Hawking radiation grows linearly with time, which results in the information paradox for the eternal black holes. By extremizing the generalized entropy that allows the contributions from the island, we find that the island extends to the outside the horizon of the Reissner-Nordström black hole. When taking the effect of the islands into account, it is shown that the entanglement entropy of Hawking radiation at late times for a given region far from the black hole horizon reproduces the Bekenstein-Hawking entropy of the Reissner-Nordström black hole with an additional term representing the effect of the matter fields. The result is consistent with the finiteness of the entanglement entropy for the radiation from an eternal black hole. This facilitates to address the black hole information paradox issue in the current case under the above-mentioned approximations.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jie Ren

Abstract We analytically study phase transitions of holographic charged Rényi entropies in two gravitational systems dual to the $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at finite density and zero temperature. The first system is the Reissner-Nordström-AdS5 black hole, which has finite entropy at zero temperature. The second system is a charged dilatonic black hole in AdS5, which has zero entropy at zero temperature. Hyperbolic black holes are employed to calculate the Rényi entropies with the entangling surface being a sphere. We perturb each system by a charged scalar field, and look for a zero mode signaling the instability of the extremal hyperbolic black hole. Zero modes as well as the leading order of the full retarded Green’s function are analytically solved for both systems, in contrast to previous studies in which only the IR (near horizon) instability was analytically treated.


2018 ◽  
Vol 191 ◽  
pp. 07003
Author(s):  
Xavier Calmet ◽  
Boris Latosh

We show that alongside the already observed gravitational waves, quantum gravity predicts the existence of two additional massive classical fields and thus two new massive waves. We set a limit on their masses using data from Eöt-Wash-like experiments. We point out that the existence of these new states is a model independent prediction of quantum gravity. We explain how these new classical fields could impact astrophysical processes and in particular the binary inspirals of black holes. We calculate the emission rate of these new states in binary inspirals astrophysical processes.


Sign in / Sign up

Export Citation Format

Share Document