Teleportation of unknown atomic entangled states via Greenberger–Horne–Zeilinger class states

2008 ◽  
Vol 86 (6) ◽  
pp. 849-851
Author(s):  
K -W Xiong

A physical scheme for teleporting unknown atomic entangled states via three-atom non-maximally entangled states is proposed in cavity quantum electrodynamics. In this scheme, the Greenberger–Horne–Zeilinger class states are used as quantum channels. The most distinct feature of our scheme is that, not only the effects of the cavity decay and thermal field are eliminated, but also the teleportation and distillation procedure can be realized simultaneously.PACS Nos.: 03.67.Hk, 03.67.Pp

2008 ◽  
Vol 22 (16) ◽  
pp. 1567-1571 ◽  
Author(s):  
YAN-LIN LIAO ◽  
YAN ZHAO

We proposed a physical scheme to concentrate unknown non-maximally entangled atomic states via cavity quantum electrodynamics (QED) techniques. In this scheme, the unique advantage is that the effects of the cavity decay and thermal field have been eliminated by using a classical driving field. The discussion indicates that it can be realized by current technologies.


2014 ◽  
Vol 12 (03) ◽  
pp. 1450011 ◽  
Author(s):  
Pengfei Xing ◽  
Yimin Liu ◽  
Chuanmei Xie ◽  
Xiansong Liu ◽  
Zhanjun Zhang

Two three-party schemes are put forward for sharing quantum operations on a remote qutrit with local operation and classical communication as well as shared entanglements. The first scheme uses a two-qutrit and three-qutrit non-maximally entangled states as quantum channels, while the second replaces the three-qutrit non-maximally entangled state with a two-qutrit. Both schemes are treated and compared from the four aspects of quantum and classical resource consumption, necessary-operation complexity, success probability and efficiency. It is found that the latter is overall more optimal than the former as far as a restricted set of operations is concerned. In addition, comparisons of both schemes with other four relevant ones are also made to show their two features, including degree generalization and channel-state generalization. Furthermore, some concrete discussions on both schemes are made to expose their important features of security, symmetry and experimental feasibility. Particularly, it is revealed that the success probabilities and intrinsic efficiencies in both schemes are completely determined by the shared entanglement.


2007 ◽  
Vol 21 (15) ◽  
pp. 923-927
Author(s):  
KUANG-WEI XIONG

We propose a feasible scheme for teleporting an unknown atomic state by using non-maximally entangled states in cavity QED. The distinct advantage of the scheme is that, not only can the teleportation and distillation procedure be realized simultaneously, but the scheme is also insensitive to the cavity decay and thermal field with the assistance of a strong classical driving field. In addition, the joint Bell-state measurement can be distinguished via detecting the atomic state.


2020 ◽  
Vol 2 (3) ◽  
pp. 352-377
Author(s):  
Efrén Honrubia ◽  
Ángel S. Sanz

Quantum teleportation plays a key role in modern quantum technologies. Thus, it is of much interest to generate alternative approaches or representations that are aimed at allowing us a better understanding of the physics involved in the process from different perspectives. With this purpose, here an approach based on graph theory is introduced and discussed in the context of some applications. Its main goal is to provide a fully symbolic framework for quantum teleportation from a dynamical viewpoint, which makes explicit at each stage of the process how entanglement and information swap among the qubits involved in it. In order to construct this dynamical perspective, it has been necessary to define some auxiliary elements, namely virtual nodes and edges, as well as an additional notation for nodes describing potential states (against nodes accounting for actual states). With these elements, not only the flow of the process can be followed step by step, but they also allow us to establish a direct correspondence between this graph-based approach and the usual state vector description. To show the suitability and versatility of this graph-based approach, several particular teleportation examples are examined in detail, which include bipartite, tripartite, and tetrapartite maximally entangled states as quantum channels. From the analysis of these cases, a general protocol is devised to describe the sharing of quantum information in presence of maximally entangled multi-qubit system.


2007 ◽  
Vol 18 (03) ◽  
pp. 343-349 ◽  
Author(s):  
ZHONG-XIAO MAN ◽  
YUN-JIE XIA ◽  
ZHAN-JUN ZHANG

We propose a scheme to secret sharing of an unknown N-atom entangled state in driven cavity QED. The scheme needs only atomic Bell states as the quantum channels and joint Bell-state measurement is unnecessary. In addition, the scheme is insensitive to the cavity decay and the thermal field.


2006 ◽  
Vol 13 (04) ◽  
pp. 363-372 ◽  
Author(s):  
E. Karpov ◽  
D. Daems ◽  
N. J. Cerf

We consider explicitly two examples of d-dimensional quantum channels with correlated noise and show that, in agreement with previous results on Pauli qubit channels, there are situations where maximally entangled input states achieve higher values of the output mutual information than product states. We obtain a strong dependence of this effect on the nature of the noise correlations as well as on the parity of the space dimension, and conjecture that when entanglement gives an advantage in terms of mutual information, maximally entangled states achieve the channel capacity.


2009 ◽  
Vol 07 (03) ◽  
pp. 669-680
Author(s):  
CHUAN-LONG LIU ◽  
YAN-WEI WANG ◽  
YI-ZHUANG ZHENG

A scheme for realizing the non-local Toffoli gate among three spatially separated nodes through cavity quantum electrodynamics (C-QED) is presented. The scheme can obtain high fidelity in the current C-QED system. With entangled qubits as quantum channels, the operation is resistive to actual environment noise.


Sign in / Sign up

Export Citation Format

Share Document