Fractional order theory of a perfect conducting thermoelastic medium

2011 ◽  
Vol 89 (3) ◽  
pp. 311-318 ◽  
Author(s):  
Magdy A. Ezzat ◽  
Ahmed S. El-Karamany

In this work, a new mathematical model of magneto-thermoelasticity theory is constructed in the context of a new consideration of heat conduction law with time-fractional order. This model is applied to a one-dimensional application for a perfect conducting half-space of elastic material, which is thermally shocked in the presence of magnetic field. Laplace transforms and state-space techniques (Ezzat. Can. J. Phys. 86, 1242, (2008)) will be used to obtain the general solution for any set of boundary conditions. According to numerical results and graphs, it is found that introducing a fractional derivative of order α has a significant effect on the temperature, stress, and heat flux distributions as well as the induced electric and magnetic fields; the curves are smoother in the case of 0 < α < 1 due to weak thermal conductivity. Some comparisons are made and shown in figures to estimate the effects of the fractional order parameter on all the studied fields.

2018 ◽  
Vol 14 (1) ◽  
pp. 2-15 ◽  
Author(s):  
Jitesh Tripathi ◽  
Shrikant Warbhe ◽  
K.C. Deshmukh ◽  
Jyoti Verma

Purpose The present work is concerned with the solution of a fractional-order thermoelastic problem of a two-dimensional infinite half space under axisymmetric distributions in which lower surface is traction free and subjected to a periodically varying heat source. The thermoelastic displacement, stresses and temperature are determined within the context of fractional-order thermoelastic theory. To observe the variations of displacement, temperature and stress inside the half space, the authors compute the numerical values of the field variables for copper material by utilizing Gaver-Stehfast algorithm for numerical inversion of Laplace transform. The effects of fractional-order parameter on the variations of field variables inside the medium are analyzed graphically. The paper aims to discuss these issues. Design/methodology/approach Integral transform technique and Gaver-Stehfast algorithm are applied to prepare the mathematical model by considering the periodically varying heat source in cylindrical co-ordinates. Findings This paper studies a problem on thermoelastic interactions in an isotropic and homogeneous elastic medium under fractional-order theory of thermoelasticity proposed by Sherief (Ezzat and El-Karamany, 2011b). The analytic solutions are found in Laplace transform domain. Gaver-Stehfast algorithm (Ezzat and El-Karamany, 2011d; Ezzat, 2012; Ezzat, El Karamany, Ezzat, 2012) is used for numerical inversion of the Laplace transform. All the integrals were evaluated using Romberg’s integration technique (El-Karamany et al., 2011) with variable step size. A mathematical model is prepared for copper material and the results are presented graphically with the discussion on the effects of fractional-order parameter. Research limitations/implications Constructed purely on theoretical mathematical model by considering different parameters and the functions. Practical implications The system of equations in this paper may prove to be useful in studying the thermal characteristics of various bodies in real-life engineering problems by considering the time fractional derivative in the field equations. Originality/value In this problem, the authors have used the time fractional-order theory of thermoelasticity to solve the problem for a half space with a periodically varying heat source to control the speed of wave propagation in terms of heat and elastic waves for different conductivity like weak conductivity, moderate conductivity and super conductivity which is a new and novel contribution.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Tianhu He ◽  
Ying Guo

The dynamic response of a one-dimensional problem for a thermoelastic rod with finite length is investigated in the context of the fractional order theory of thermoelasticity in the present work. The rod is fixed at both ends and subjected to a moving heat source. The fractional order thermoelastic coupled governing equations for the rod are formulated. Laplace transform as well as its numerical inversion is applied to solving the governing equations. The variations of the considered temperature, displacement, and stress in the rod are obtained and demonstrated graphically. The effects of time, velocity of the moving heat source, and fractional order parameter on the distributions of the considered variables are of concern and discussed in detail.


2013 ◽  
Vol 209 ◽  
pp. 129-132 ◽  
Author(s):  
Shreya Shah ◽  
Tejal N. Shah ◽  
P.N. Gajjar

The temperature profile, heat flux and thermal conductivity are investigated for the chain length of 67 one-dimensional (1-D) oscillators. FPU-β and FK models are used for interparticle interactions and substrate interactions, respectively. As harmonic chain does not produce temperature gradient along the chain, it is required to introduce anharmonicity in the numerical simulation. The anharmonicity dependent temperature profile, thermal conductivity and heat flux are simulated for different strength of anharmonicity β = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1. It is concluded that heat flux obeys J = 0.3947 e0.553β with R2 = 0.9319 and thermal conductivity obeys κ = 0.0276 e0.5559β with R2 = 0.9319.


Author(s):  
William C. Thomas ◽  
Robert R. Zarr

A mathematical model is presented for a new-generation guarded-hot-plate apparatus to measure the thermal conductivity of insulation materials. This apparatus will be used to provide standard reference materials for greater ranges of temperature and pressure than have been previously available. The apparatus requires precise control of 16 interacting heated components to achieve the steady temperature and one-dimensional heat-transfer conditions specified in standardized test methods. Achieving these criteria requires deriving gain settings for the 16 proportional-integral-derivative (PID) controllers, comprising potentially 48 parameters. Traditional tuning procedures based on trial-and-error operation of the actual apparatus impose unacceptably lengthy test times and expense. A primary objective of the present investigation is to describe and confirm the incremental control algorithm for this application and determine satisfactory gain settings using a mathematical model that simulates in seconds test runs that would require days to complete using the apparatus. The first of two steps to achieve precise temperature control is to create and validate a model that accounts for heating rates in the various components and interactions with their surroundings. The next step is to simulate dynamic performance and control with the model and determine settings for the PID controllers. A key criterion in deriving the model is to account for effects that significantly impact thermal conductivity measurements while maintaining a tractable model that meets the simulation time constraint. The mathematical model presented here demonstrates how an intricate apparatus can be represented by many interconnected aggregated-capacity masses to depict overall thermal response for control simulations. The major assemblies are the hot plate with four subcomponents, two cold plates with three subcomponents each, and two edge guards with three subcomponents each. Using symmetry about the hot plate, the number of components in the simulation model is reduced to 12 or 15, depending on the mode of operation for the apparatus. Configurations of the main components with embedded heating elements were carefully designed earlier using detailed finite-element analyses to give essentially isothermal surfaces and one-dimensional heat flow through test specimens. It is not tractable, or perhaps justified, to extend these prior analyses to simulate the controlled transient responses of the apparatus. The earlier design criterion does, however, support the aggregated-capacity simplification implemented in the present thermal model. The governing equations follow from dynamic energy balances on components with controlled heating elements and additional intermediate (“floating”) components. Thermal bridges comprise conduction paths, with and without surface convection and radiation, between components and fixed-temperature “heat sinks.” An implicit finite-difference numerical method was used to solve the resulting system of first-order differential equations. The mathematical model was initially validated using measurement data from test runs where a step change in heating rate was applied to single elements in turn, and component temperatures were recorded up to a nearly steady condition. Thermocouples and standard platinum resistance thermometers were used to measure temperatures, and thermopiles were used to measure temperature differences. Next, extensive simulations were conducted with the mathematical model to estimate suitable gain settings for the various controllers. The criteria were tight temperature control after reaching set points and acceptable times to achieve quasi-steady-state operation. Comparisons between measurements and predicted temperatures for heated components are presented. The results show that the model incorporating the above simplifying approximations is satisfactory for components comprising the hot-plate and cold-plate assemblies. For the edge guards, however, the conventional aggregated-capacity criteria are not as fully satisfied because of their configuration. Temperature variations in the edge guards, fortunately, have a lesser effect on the accuracy of the thermal conductivity measurements. Therefore, the thermal response model is deemed satisfactory for simulating PID feedback to investigate “closed-loop” control of the apparatus, thus meeting the primary objective.


2015 ◽  
Vol 1786 ◽  
pp. 43-49
Author(s):  
Chengzhi Luo ◽  
Chunxu Pan

ABSTRACTOne-dimensional carbon nanomaterials (1-DCNMs), as one of the most promising one-dimension nanomaterials due to its unique microstructure, peculiar chemical, mechanical, thermal, and electronic properties, have long been considered as an important building block to construct micro-nano-electrics and devices. The growth controllability in direction, morphology and microstructure may provide a straightforward platform for fabricating high performance 1-DCNMs-based devices. Recently, electric and magnetic fields have emerged as key techniques to control the 1-DCNMs' growth direction, morphology and microstructure. In this paper, we focus explicitly on the 1-DCNMs preparations with assistance of a magnetic field, and the main problems that should be solved in the future are also discussed.


2018 ◽  
pp. 29-35
Author(s):  
А. Avramenko ◽  
M. Kovetskaya ◽  
A. Tyrinov ◽  
Yu. Kovetska

Nanofluid using for intensification of heat transfer during boiling are analyzed. The using boiling nanofluids for cooling high-temperature surfaces allows significantly intensify heat transfer process by increasing the heat transfer coefficient of a nanofluid in comparison with a pure liquid. The properties of nanoparticles, their concentration in the liquid, the underheating of the liquid to the saturation temperature have significant effect on the rate of heat transfer during boiling of the nanofluid. Increasing critical heat flux during boiling of nanofluids is associated with the formation of deposition layer of nanoparticles on heated surface, which contributes changing in the microcharacteristics of heat exchange surface. An increase in the critical heat flux during boiling of nanofluids is associated with the formation of a layer of deposition of nanoparticles on the surface, which contributes to a change in the microcharacteristics of the heat transfer of the surface. Mathematical model and results of calculation of film boiling characteristics of nanofluid on vertical heated wall are presented. It is shown that the greatest influence on the processes of heat and mass transfer during film boiling of the nanofluid is exerted by wall overheating, the ratio of temperature and Brownian diffusion and the concentration of nanoparticles in the liquid. The mathematical model does not take into account the effect changing structure of the heated surface on heat transfer processes but it allows to evaluate the effect of various thermophysical parameters on intensity of deposition of nanoparticles on heated wall. The obtained results allow to evaluate the effect of nanofluid physical properties on heat and mass transfer at cooling of high-temperature surfaces. The using nanofluids as cooling liquids for heat transfer equipment in the regime of supercritical heat transfer promotes an increase in heat transfer and accelerates the cooling process of high-temperature surfaces. Because of low thermal conductivity of vapor in comparison with the thermal conductivity of the liquid, an increase in the concentration of nanoparticles in the vapor contributes to greater growth in heat transfer in the case of supercritical heat transfer.


Sign in / Sign up

Export Citation Format

Share Document