A NOTE ON THE CLASSIFICATION OF GEOMAGNETIC SIGNALS BELOW 30 CYCLES PER SECOND

1962 ◽  
Vol 40 (8) ◽  
pp. 1000-1009 ◽  
Author(s):  
J. E. Lokken ◽  
J. A. Shand ◽  
C. S. Wright

Simultaneous measurements in the frequency range 0.003 to 30 c.p.s. at a number of widely spaced stations have led to the identification of two general micropulsation classes, impulsive and regular, as well as to an adjacent but independent extremely low frequency (e.l.f.) background. The signal bandwidths and the dependence on geomagnetic latitude and longitude serve to distinguish the classes.

2000 ◽  
Vol 10 (06) ◽  
pp. 1171-1266 ◽  
Author(s):  
EUGENE M. IZHIKEVICH

Bifurcation mechanisms involved in the generation of action potentials (spikes) by neurons are reviewed here. We show how the type of bifurcation determines the neuro-computational properties of the cells. For example, when the rest state is near a saddle-node bifurcation, the cell can fire all-or-none spikes with an arbitrary low frequency, it has a well-defined threshold manifold, and it acts as an integrator; i.e. the higher the frequency of incoming pulses, the sooner it fires. In contrast, when the rest state is near an Andronov–Hopf bifurcation, the cell fires in a certain frequency range, its spikes are not all-or-none, it does not have a well-defined threshold manifold, it can fire in response to an inhibitory pulse, and it acts as a resonator; i.e. it responds preferentially to a certain (resonant) frequency of the input. Increasing the input frequency may actually delay or terminate its firing. We also describe the phenomenon of neural bursting, and we use geometric bifurcation theory to extend the existing classification of bursters, including many new types. We discuss how the type of burster defines its neuro-computational properties, and we show that different bursters can interact, synchronize and process information differently.


2020 ◽  
Author(s):  
Caron E.J. Vossen ◽  
Corrado Cimarelli ◽  
Alec J. Bennett ◽  
André Geisler ◽  
Damien Gaudin ◽  
...  

<p>Volcanoes are increasingly better monitored around the world. Nonetheless, the detection and monitoring of volcanic ash plumes remains difficult, especially in remote areas. Intense electrical activity and lightning in volcanic plumes suggests that electrical monitoring of active volcanoes can aid the detection of ash emissions in near real-time. Current very low frequency and wide-band thunderstorm networks have proven to be able to detect plumes of large magnitude. However, the time delay and the relatively high number of non-detected explosive episodes show that the applicability of these systems to the detection of smaller (and often more frequent) ash-rich explosive events is limited. Here we use a different type of thunderstorm detector to observe electrical discharges generated by the persistent Vulcanian activity of Minamidake crater at Sakurajima volcano in Japan. The sensors consist of two antennas that measure the induced current due to the change in electric field with time. In contrast to the current thunderstorm networks, these sensors measure within the extremely low frequency range (1-45 Hz) and can detect lightning up to 35 kilometres distance.</p><p>Two detectors were installed at a distance of 3 and 4 kilometres from Minamidake crater and recorded almost continuously since July 2018. Within this period, the ash plumes reached a maximum height of 5.5 kilometres above the crater rim. Using a volcanic lightning detection algorithm and the catalogue of volcanic explosions compiled by the Japan Meteorological Agency (JMA), the number of electrical discharges was determined for each individual explosive event. In addition, the start of electrical discharges was compared to the eruption onset estimated by the JMA.</p><p>Preliminary results show that the detector closest to the crater had the highest detection efficiency. It detected electrical discharges during 60% of the eruptions listed by the JMA. This is significantly higher than for the World Wide Lightning Location Network, which detected electrical discharges (in the very low frequency range) within 20 kilometres of Sakurajima for less than 0.005% of the eruptions. Furthermore, the results show that for 40% of the detected eruptions, electrical discharges were detected before the estimated JMA timing. Hence, electrical discharges can mark the inception of the explosion with a higher precision and are an indication of ash emission. This demonstrates the value of the cost-effective sensors used here as a monitoring tool at active volcanoes.</p>


Radio Science ◽  
2017 ◽  
Vol 52 (10) ◽  
pp. 1245-1252 ◽  
Author(s):  
Janusz Mlynarczyk ◽  
Andrzej Kulak ◽  
Jacobo Salvador

2018 ◽  
Vol 18 (3) ◽  
pp. 94-99
Author(s):  
Darko Brodić ◽  
Alessia Amelio ◽  
Ivo R. Draganov

Abstract In this paper, the extremely low frequency magnetic field produced by the tablet computers is explored. The measurement of the tablet computers’ magnetic field is performed by using a measuring geometry previously proposed for the laptop computers. The experiment is conducted on five Android tablet computers. The measured values of the magnetic field are compared to the widely accepted TCO safety standard. Then, the results are classified by the Self-Organizing Map method in order to create different levels of safety or danger concerning the magnetic field to which tablet computer users are exposed. Furthermore, a brief comparison of the obtained magnetic field levels with the ones from typical laptops is performed. At the end, a practical suggestion on how to avoid the high exposure to the low frequency magnetic field emitted by the tablet computers is given.


2006 ◽  
Vol 291 (6) ◽  
pp. H2816-H2824 ◽  
Author(s):  
David R. Brown ◽  
Lisa A. Cassis ◽  
Dennis L. Silcox ◽  
Laura V. Brown ◽  
David C. Randall

The slope of the log of power versus the log of frequency in the arterial blood pressure (BP) power spectrum is classically considered constant over the low-frequency range (i.e., “fractal” behavior), and is quantified by β in the relationship “1/ fβ.” In practice, the fractal range cannot extend to indefinitely low frequencies, but factor(s) that terminate this behavior, and determine β, are unclear. We present 1) data in rats ( n = 8) that reveal an extremely low frequency spectral region (0.083–1 cycle/h), where β approaches 0 (i.e., the “shoulder”); and 2) a model that 1) predicts realistic values of β within that range of the spectrum that conforms to fractal dynamics (∼1–60 cycles/h), 2) offers an explanation for the shoulder, and 3) predicts that the “successive difference” in mean BP (mBP) is an important parameter of circulatory function. We recorded BP for up to 16 days. The absolute difference between successive mBP samples at 0.1 Hz (the successive difference, or Δ) was 1.87 ± 0.21 mmHg (means ± SD). We calculated β for three frequency ranges: 1) 0.083–1; 2) 1–6; and 3) 6–60 cycles/h. The β for all three regions differed ( P < 0.01). For the two higher frequency ranges, β indicated a fractal relationship (β6–60/h = 1.27 ± 0.01; β1–6/h = 1.80 ± 0.16). Conversely, the slope of the lowest frequency region (i.e., the shoulder) was nearly flat (β0.083–1 /h = 0.32 ± 0.28). We simulated the BP time series as a random walk about 100 mmHg with ranges above and below of 10, 30, and 50 mmHg and with Δ from 0.5 to 2.5. The spectrum for the conditions mimicking actual BP time series (i.e., range, 85–115 mmHg; Δ, 2.00) resembled the observed spectra, with β in the lowest frequency range = 0.207 and fractal-like behavior in the two higher frequency ranges (β = 1.707 and 2.057). We suggest that the combined actions of mechanisms limiting the excursion of arterial BP produce the shoulder in the spectrum and that Δ contributes to determining β.


2012 ◽  
Vol 14 (4) ◽  
pp. 381-399 ◽  

In the past 30 years the concern that daily exposure to extremely low-frequency magnetic fields (ELF-EMF) (1 to 300 Hz) might be harmful to human health (cancer, neurobehavioral disturbances, etc) has been the object of debate, and has become a public health concern. This has resulted in the classification of ELF-EMF into category 2B, ie, agents that are "possibly carcinogenic to humans" by the International Agency for Research on Cancer. Since melatonin, a neurohormone secreted by the pineal gland, has been shown to possess oncostatic properties, a "melatonin hypothesis" has been raised, stating that exposure to EMF might decrease melatonin production and therefore might promote the development of breast cancer in humans. Data from the literature reviewed here are contradictory. In addition, we have demonstrated a lack of effect of ELF-EMF on melatonin secretion in humans exposed to EMF (up to 20 years' exposure) which rebuts the melatonin hypothesis. Currently, the debate concerns the effects of ELF-EMF on the risk of childhood leukemia in children chronically exposed to more than 0.4 μT. Further research is thus needed to obtain more definite answers regarding the potential deleterious effects of ELF-EMF.


Sign in / Sign up

Export Citation Format

Share Document