Kinematics of the central stars of the planetary nebulae

1980 ◽  
Vol 58 (1) ◽  
pp. 16-19 ◽  
Author(s):  
Y. P. Varshni

A study of some statistical properties of the transverse motion of the central stars of 62 planetary nebulae is presented. It is found that, at low values, the observed proper motion is almost independent of the distance.

2003 ◽  
Vol 209 ◽  
pp. 447-450
Author(s):  
Romano L.M. Corradi

An improved database of ionized haloes around PNe has been built by adding the results of an extensive observational campaign to the data available in the literature. The new observations allowed us to discovered new haloes around CN 1-5, IC 2165, IC 2553, NGC 2792, NGC 2867, NGC 3918, NGC 5979, NGC 6578, PB 4, and possibly IC 1747.The global sample consists of 29 AGB haloes, that are believed to still contain information about the mass loss from the AGB progenitor star. Six of these haloes show a highly asymmetrical geometry that is tentatively ascribed to the interaction of the stellar outflow with the ISM.Another 5 PNe show candidate recombination haloes. These are produced by the recombination front that sets up when the stellar luminosity drops in its post-AGB evolution. The resulting, limb-brightened shell resembles a real AGB halo, but is not related to AGB any mass loss event.Double AGB haloes are found in at least 4 PNe.For 11 PNe, deep images are available, but no halo is found to a level of ≲ 10-3 the peak surface brightness of the inner nebula.These observations show us that ionized haloes are a common morphological component of PNe, being found in 70% of elliptical PNe for which adequately deep images exist. Statistical properties of the haloes are briefly discussed. Using the kinematical ages of the haloes and inner nebulae, we conclude that most of the PNe with detected haloes have hydrogen burning central stars.


1993 ◽  
Vol 155 ◽  
pp. 480-480
Author(s):  
C.Y. Zhang ◽  
S. Kwok

Making use of the results from recent infrared and radio surveys of planetary nebulae, we have selected 431 nebulae to form a sample where a number of distance-independent parameters (e.g., Tb, Td, I60μm and IRE) can be constructed. In addition, we also made use of other distance-independent parameters ne and T∗ where recent measurements are available. We have investigated the relationships among these parameters in the context of a coupled evolution model of the nebula and the central star. We find that most of the observed data in fact lie within the area covered by the model tracks, therefore lending strong support to the correctness of the model. Most interestingly, we find that the evolutionary tracks for nebulae with central stars of different core masses can be separated in a Tb-T∗ plane. This implies that the core masses and ages of the central stars can be determined completely independent of distance assumptions. The core masses and ages have been obtained for 302 central stars with previously determined central-star temperatures. We find that the mass distribution of the central stars strongly peaks at 0.6 M⊙, with 66% of the sample having masses <0.64 MM⊙. The luminosities of the central stars are then derived from their positions in the HR diagram according to their core masses and central star temperatures. If this method of mass (and luminosity) determination turns out to be accurate, we can bypass the extremely unreliable estimates for distances, and will be able to derive other physical properties of planetary nebulae.


2017 ◽  
Vol 600 ◽  
pp. L9 ◽  
Author(s):  
D. Jones ◽  
H. Van Winckel ◽  
A. Aller ◽  
K. Exter ◽  
O. De Marco

2013 ◽  
Vol 558 ◽  
pp. A122 ◽  
Author(s):  
Jorge García-Rojas ◽  
Miriam Peña ◽  
Christophe Morisset ◽  
Gloria Delgado-Inglada ◽  
Adal Mesa-Delgado ◽  
...  

2016 ◽  
Vol 12 (S323) ◽  
pp. 65-69 ◽  
Author(s):  
Jorge García-Rojas ◽  
Romano L. M. Corradi ◽  
Henri M. J. Boffin ◽  
Hektor Monteiro ◽  
David Jones ◽  
...  

AbstractThe discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Universe. In planetary nebulae (PNe), the most common explanation for the discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much colder plasma enhanced in heavy elements. This dual nature is not predicted by mass loss theories, and direct observational support for it is still weak. In this work, we present our recent findings that demonstrate that the largest abundance discrepancies are associated with close binary central stars. OSIRIS-GTC tunable filter imaging of the faint O ii ORLs and MUSE-VLT deep 2D spectrophotometry confirm that O ii ORL emission is more centrally concentrated than that of [Oiii] CELs and, therefore, that the abundance discrepancy may be closely linked to binary evolution.


2016 ◽  
Vol 152 (2) ◽  
pp. 34 ◽  
Author(s):  
Todd C. Hillwig ◽  
Howard E. Bond ◽  
David J. Frew ◽  
S. C. Schaub ◽  
Eva H. L. Bodman

2016 ◽  
Vol 12 (S323) ◽  
pp. 350-351
Author(s):  
L. Hernández-Martínez ◽  
D. Estrella ◽  
P. F. Velázquez ◽  
A. Esquivel ◽  
A. C. Raga

AbstractWe explored the photoionisation effects on both the proper motion and emission of planetary nebulae NGC 6302, by means of hydrodynamical simulations. We used the GUACHO code, which includes the photoionisation due to central source (Esquivel et al. 2009, Esquivel & Raga 2013). We model these PNe considering an interacting stellar fast wind with and ejected toroidally shaped slow wind (Uscanga et al. 2014). Synthetic Hα emission maps were obtained from our numerical results in order to do a comparison between the cases with and without photoionisation. Using a wavelets fittering method on our results for the ionisation case, we do not find an increase in the proper motion velocities, however we can see an accelerated expansion in both cases. For the ionisation case the Hα emission presents an increase.


Sign in / Sign up

Export Citation Format

Share Document