Molecular and global structure and dynamics of membranes and lipid bilayers

1990 ◽  
Vol 68 (9) ◽  
pp. 999-1012 ◽  
Author(s):  
E. Sackmann

The cell plasma is a composite type of material that is made up of a two-dimensional liquid crystal (lipid–protein bilayer) to which a macromolecular network (the cytoskeleton) is loosely coupled. The latter may be approximately two dimensional as in the case of the erythrocytes or may extend throughout the whole cell cytoplasm. Owing to this combination of two states of matter, the membrane combines the dynamics and flexibility of a fluid with the mechanical stability of a solid. Owing to its low dimensionality, the local structure of the bilayer or the global shape of cells may be most effectively controlled and modulated by biochemical signals such as macromolecular adsorption. The present contribution deals with comparative studies of the local and global dynamic properties of biological and artificial membranes. In the first part the question of the physical basis of selective lipid–protein interaction mechanisms is addressed and the outstanding viscoelastic properties of plasma membranes and their role for local instabilities shape fluctuations of cells and the cell–substrate interaction are described. The second part deals with the molecular architecture and dynamics of composite membranes prepared by combining monomeric and macromolecular lipids. These model membranes open new possibilities to mimick complex mechanical processes of cell plasma membranes and to prepare low-dimensionality macromolecular solutions and gels. Finally, the use of such compound systems by nature to prepare the semipermeable protective layers of plant leaves, the so-called cuticle, is discussed. In analogy to plasma membranes, the local transport properties are modulated by variation of the liquid-crystalline state of the monomeric waxes.

2016 ◽  
Vol 52 (90) ◽  
pp. 13269-13272 ◽  
Author(s):  
Michael R. Dent ◽  
Ismael López-Duarte ◽  
Callum J. Dickson ◽  
Phoom Chairatana ◽  
Harry L. Anderson ◽  
...  

A thiophene-based molecular rotor was used to probe ordering and viscosity within artificial lipid bilayers and live cell plasma membranes.


2019 ◽  
Vol 123 (30) ◽  
pp. 6492-6504 ◽  
Author(s):  
Wai Cheng Wong ◽  
Jz-Yuan Juo ◽  
Chih-Hsiang Lin ◽  
Yi-Hung Liao ◽  
Ching-Ya Cheng ◽  
...  

2020 ◽  
Vol 118 (3) ◽  
pp. 233a
Author(s):  
Wai Cheng Wong ◽  
Jz-Yuan Juo ◽  
Chih-Hsiang Lin ◽  
Yi-Hung Liao ◽  
Ching-Ya Cheng ◽  
...  

2020 ◽  
Vol 20 (11) ◽  
pp. 1340-1351 ◽  
Author(s):  
Ponnurengam M. Sivakumar ◽  
Matin Islami ◽  
Ali Zarrabi ◽  
Arezoo Khosravi ◽  
Shohreh Peimanfard

Background and objective: Graphene-based nanomaterials have received increasing attention due to their unique physical-chemical properties including two-dimensional planar structure, large surface area, chemical and mechanical stability, superconductivity and good biocompatibility. On the other hand, graphene-based nanomaterials have been explored as theranostics agents, the combination of therapeutics and diagnostics. In recent years, grafting hydrophilic polymer moieties have been introduced as an efficient approach to improve the properties of graphene-based nanomaterials and obtain new nanoassemblies for cancer therapy. Methods and results: This review would illustrate biodistribution, cellular uptake and toxicity of polymergraphene nanoassemblies and summarize part of successes achieved in cancer treatment using such nanoassemblies. Conclusion: The observations showed successful targeting functionality of the polymer-GO conjugations and demonstrated a reduction of the side effects of anti-cancer drugs for normal tissues.


1984 ◽  
Vol 259 (19) ◽  
pp. 12112-12116
Author(s):  
E J Schoenle ◽  
L D Adams ◽  
D W Sammons

1986 ◽  
Vol 239 (2) ◽  
pp. 301-310 ◽  
Author(s):  
W D Sweet ◽  
F Schroeder

The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5′-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet.


Sign in / Sign up

Export Citation Format

Share Document