artificial lipid bilayers
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 119 (1) ◽  
pp. e2112390119
Author(s):  
Zhouyang Shen ◽  
Kalina T. Belcheva ◽  
Mark Jelcic ◽  
King Lam Hui ◽  
Anushka Katikaneni ◽  
...  

When nuclear membranes are stretched, the peripheral membrane enzyme cytosolic phospholipase A2 (cPLA2) binds via its calcium-dependent C2 domain (cPLA2-C2) and initiates bioactive lipid signaling and tissue inflammation. More than 150 C2-like domains are encoded in vertebrate genomes. How many of them are mechanosensors and quantitative relationships between tension and membrane recruitment remain unexplored, leaving a knowledge gap in the mechanotransduction field. In this study, we imaged the mechanosensitive adsorption of cPLA2 and its C2 domain to nuclear membranes and artificial lipid bilayers, comparing it to related C2-like motifs. Stretch increased the Ca2+ sensitivity of all tested domains, promoting half-maximal binding of cPLA2 at cytoplasmic resting-Ca2+ concentrations. cPLA2-C2 bound up to 50 times tighter to stretched than to unstretched membranes. Our data suggest that a synergy of mechanosensitive Ca2+ interactions and deep, hydrophobic membrane insertion enables cPLA2-C2 to detect stretched membranes with antibody-like affinity, providing a quantitative basis for understanding mechanotransduction by C2-like domains.


Langmuir ◽  
2021 ◽  
Author(s):  
N. Malithi Fonseka ◽  
Fernando Teran Arce ◽  
Hamish S. Christie ◽  
Craig A. Aspinwall ◽  
S. Scott Saavedra

2021 ◽  
Vol 22 (18) ◽  
pp. 10156
Author(s):  
Parvesh Wadhwani ◽  
Saiguru Sekaran ◽  
Erik Strandberg ◽  
Jochen Bürck ◽  
Archana Chugh ◽  
...  

A group of seven peptides from spider venom with diverse sequences constitute the latarcin family. They have been described as membrane-active antibiotics, but their lipid interactions have not yet been addressed. Using circular dichroism and solid-state 15N-NMR, we systematically characterized and compared the conformation and helix alignment of all seven peptides in their membrane-bound state. These structural results could be correlated with activity assays (antimicrobial, hemolysis, fluorescence vesicle leakage). Functional synergy was not observed amongst any of the latarcins. In the presence of lipids, all peptides fold into amphiphilic α-helices as expected, the helices being either surface-bound or tilted in the bilayer. The most tilted peptide, Ltc2a, possesses a novel kind of amphiphilic profile with a coiled-coil-like hydrophobic strip and is the most aggressive of all. It indiscriminately permeabilizes natural membranes (antimicrobial, hemolysis) as well as artificial lipid bilayers through the segregation of anionic lipids and possibly enhanced motional averaging. Ltc1, Ltc3a, Ltc4a, and Ltc5a are efficient and selective in killing bacteria but without causing significant bilayer disturbance. They act rather slowly or may even translocate towards intracellular targets, suggesting more subtle lipid interactions. Ltc6a and Ltc7, finally, do not show much antimicrobial action but can nonetheless perturb model bilayers.


Author(s):  
Simli Dey ◽  
Dayana Surendran ◽  
Oskar Enberg ◽  
Ankur Gupta ◽  
Sashaina E. Fanibunda ◽  
...  

AbstractSerotonin is a neurotransmitter as well as a somatic signaling molecule, and the serotonergic system is a major target for psychotropic drugs. Serotonin, together with a few related neurotransmitters, has recently been found to exhibit an unexpectedly high lipid membrane affinity1–3. It has been conjectured that extrasynaptic serotonin can diffuse in the lipid membrane to efficiently reach remote receptors (and receptors with buried ligand-binding sites)4, providing a mechanism for the diffuse ‘volume’ neurotransmission that serotonin is capable of5–10. Here we show that membrane binding by serotonin can directly modulate membrane properties and cellular function, independent of its receptor-mediated actions. Atomic force microscopy shows that serotonin binding makes artificial lipid bilayers softer. It induces nucleation of liquid disordered domains inside the raft-like liquid-ordered domains in a ternary bilayer displaying phase separation. Solid-state NMR spectroscopy corroborates this data, revealing a rather homogeneous decrease in the order parameter of the lipid chains in the presence of serotonin. In the RN46A immortalized serotonergic neuronal cell line, extracellular serotonin enhances transferrin receptor endocytosis, an action exerted even in the presence of both broad-spectrum serotonin receptor and transporter inhibitors. Similarly, it increases the binding and internalization of Islet Amyloid Polypeptide (IAPP) oligomers, suggesting a connection between serotonin, which is co-secreted with IAPP by pancreatic beta cells, and the cellular effects of IAPP. Our results uncover a hitherto unknown serotonin-bilayer interaction that can potentiate key cellular processes in a receptor-independent fashion. Therefore, some pathways of serotonergic action may escape potent pharmaceutical agents designed for serotonin transporters or receptors. Conversely, bio-orthogonal serotonin-mimetics may provide a new class of cell-membrane modulators.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 920 ◽  
Author(s):  
Tanzir Ahmed ◽  
Sander van den Driesche ◽  
Martin Oellers ◽  
Roland Hemmler ◽  
Karsten Gall ◽  
...  

Artificial lipid bilayers are an essential tool to investigate channel forming proteins. A particular challenge is to study antibiotic uptake through bacterial porins requiring low volume and parallelization. Here, we present a lipid bilayer silicon chip having a Parylene-C coated silicon nitride membrane with different aperture sizes. The Parylene-C allows very fast lipid bilayer membrane fabrication, 30 to 130 s. The realization-success is very high and an average lifetime of at least 9 h was established. Furthermore, a 3D-printed holder is realized where parallel assembly of the chips, including fluid inlets for the pipetting robot, is demonstrated.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Simon Lebecque ◽  
Jean-Marc Crowet ◽  
Laurence Lins ◽  
Benjamin M. Delory ◽  
Patrick du Jardin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document